Short Gamma-Ray Busts in the Era of **Multi-Messenger Astrophysics**

Jonathan

Granot

Open University of Israel & George Washington University

High Energy and the Cosmos; AGASS-HEP-Cosmology Workshop **Ariel University, 20 February 2025**

GRB Theoretical Framework:

Progenitors:

- Long: massive stars
- **Short**: binary mergers (NS-NS, BH-NS?)
- Acceleration: fireball or magnetic?

- Prompt γ-rays: dissipation internal shocks or magnetic reconnection? Emission mechanism?
- **Deceleration**: the outflow decelerates (by a reverse shock for $\sigma \leq 1$) as it sweeps-up the external medium
- ■Afterglow: from the long lived forward shock going into the external medium; as the shock decelerates the typical frequency decreases: X-ray → optical → radio

GW170817 / GRB170817A: NS-NS merger

First NS-NS merger detected in gravitational waves (GW)

First electromagnetic counterpart to a GW event

- * The short GRB 170817A (very under-luminous, 1.74 s γ -GW delay)
- Optical (IR to UV) kilonova emission over a few weeks
- ✤ X-ray (> 9 d; still barely detected) to radio (>16 d) afterglow
- First direct sGRB NS-NS merger association (Eichler+ 1989)
- First clear-cut kilonova
- $D_{GW} = 43^{+2.9}_{-6.9}$ Mpc; host galaxy is elliptical: $D = 41.0 \pm 3.1$ Mpc 10° (z = 0.009783) 2 kpc from host center in projection

GW170817 / GRB170817A: Kilonova

Observations require two components:

✤ First blue/fast, lanthanide-poor $M_{\rm ej} \approx (1\% - 2\%) M_{\odot}, v_{\rm ej} \approx (0.2 - 0.3)c$

•

- ★ Second red/slow, lanthanide-rich $M_{\rm ej} \approx (3\% 5\%) M_{\odot}, v_{\rm ej} \approx (0.05 0.2)c$
- Synthesized large amounts of heavy elements (may dominate the cosmic r-process nucleosynthesis, heavy metals e.g. gold, platinum)

tidal dynamical

 $v \approx 0.2c-0.3c$

b

Neutron Star + Neutron Star long lived neutron star remnant

squeezed dynamical

disk wind

 $v \approx 0.2c-0.3c$

Neutron Star + Neutron Star remnant prompt collapse to black hole (Kasen et al. 2017) Neutron Star + Black Hole black hole remnant

GW170817 / GRB170817A: Remnant Type

- M_{1,2} = pre-merger NS M_{gravitational}
- post-merger total mass: $M_i = M_1 + M_2$
- Final mass M_f ≈ 0.93M_i due to:
 - GW & neutrino energy losses
 - Mass ejection during the merger
- A stable NS or SMNS \Rightarrow P₀ \approx 1 ms \Rightarrow E_{rot} \gtrsim 10^{52.5} erg, $\tau_{sd} \approx 20B_{13}^{-2}$ days \Rightarrow would contradict afterglow observations (also what produces the GRB/afterglow?)
- The argument can be reversed to constrain NS EoS & $M_{\rm max} \lesssim 2.17 M_{\odot}$ (Margalit & Metzger 2017; Rezzolla et al. 2018)

- The $\Delta t \approx 1.74$ s delay between the GW chirp signal & the sGRB onset $\Rightarrow \left| \frac{v_{GW}}{c} 1 \right| \leq 4 \cdot 10^{-16}$
- A HMNS may explain $\Delta t \approx 1.74$ s by $t_{\text{HMNS}} \leq 0.5$ s & $t_{\text{bo}} \sim 1$ s (Moharana & Piran 2017 find $t_{\text{bo}} \sim 0.5$ s for SGRBs, from a plateau in their duration distribution, $dN_{\text{GRB}}/dT_{\text{GRB}}$)
- Direct BH formation \Rightarrow a shorter jet breakout time $t_{bo} \Rightarrow$ the jet is less likely to be chocked
- If the prompt γ -rays are beamed away from us (large $\Gamma\Delta\theta$), the implied on-axis $L_{\gamma,iso} \& E_{peak}$ are very high inconsistent with their observed correlation (JG+ 2017) & implying large compactness (Matsumoto+ 2019) \Rightarrow they must arise from $\Gamma\Delta\theta < 1 \Rightarrow$ a jet with angular structure

- The $\Delta t \approx 1.74$ s delay between the GW chirp signal & the sGRB onset $\Rightarrow \left| \frac{v_{GW}}{c} 1 \right| \leq 4 \cdot 10^{-16}$
- A HMNS may explain $\Delta t \approx 1.74$ s by $t_{\text{HMNS}} \leq 0.5$ s & $t_{\text{bo}} \sim 1$ s (Moharana & Piran 2017 find $t_{\text{bo}} \sim 0.5$ s for SGRBs, from a plateau in their duration distribution, $dN_{\text{GRB}}/dT_{\text{GRB}}$)
- Direct BH formation \Rightarrow a shorter jet breakout time $t_{bo} \Rightarrow$ the jet is less likely to be chocked
- If the prompt γ -rays are beamed away from us (large $\Gamma\Delta\theta$), the implied on-axis $L_{\gamma,iso} \& E_{peak}$ are very high inconsistent with their observed correlation (JG+ 2017) & implying large compactness (Matsumoto+ 2019) \Rightarrow they must arise from $\Gamma\Delta\theta < 1 \Rightarrow$ a jet with angular structure

- The $\Delta t \approx 1.74$ s delay between the GW chirp signal & the sGRB onset $\Rightarrow \left| \frac{v_{GW}}{c} 1 \right| \leq 4 \cdot 10^{-16}$
- A HMNS may explain $\Delta t \approx 1.74$ s by $t_{\text{HMNS}} \leq 0.5$ s & $t_{\text{bo}} \sim 1$ s (Moharana & Piran 2017 find $t_{\text{bo}} \sim 0.5$ s for SGRBs, from a plateau in their duration distribution, $dN_{\text{GRB}}/dT_{\text{GRB}}$)
- Direct BH formation \Rightarrow a shorter jet breakout time $t_{bo} \Rightarrow$ the jet is less likely to be chocked
- If the prompt γ -rays are beamed away from us (large $\Gamma\Delta\theta$), the implied on-axis $L_{\gamma,iso} \& E_{peak}$ are very high inconsistent with their observed correlation (JG+ 2017) & implying large compactness (Matsumoto+ 2019) \Rightarrow they must arise from $\Gamma\Delta\theta < 1 \Rightarrow$ a jet with angular structure

- The $\Delta t \approx 1.74$ s delay between the GW chirp signal & the sGRB onset $\Rightarrow \left| \frac{v_{GW}}{c} 1 \right| \leq 4 \cdot 10^{-16}$
- A HMNS may explain $\Delta t \approx 1.74$ s by $t_{\text{HMNS}} \leq 0.5$ s & $t_{\text{bo}} \sim 1$ s (Moharana & Piran 2017 find $t_{\text{bo}} \sim 0.5$ s for SGRBs, from a plateau in their duration distribution, $dN_{\text{GRB}}/dT_{\text{GRB}}$)
- Direct BH formation \Rightarrow a shorter jet breakout time $t_{bo} \Rightarrow$ the jet is less likely to be chocked
- If the prompt γ -rays are beamed away from us (large $\Gamma\Delta\theta$), the implied on-axis $L_{\gamma,iso} \& E_{peak}$ are very high inconsistent with their observed correlation (JG+ 2017) & implying large compactness (Matsumoto+ 2019) \Rightarrow they must arise from $\Gamma\Delta\theta < 1 \Rightarrow$ a jet with angular structure

GRB170817A: Afterglow Observations

GRB170817A: Afterglow Observations

Analogy to rising F_{ν} : X-ray Plateaus

Analogy to rising F_{ν} : X-ray Plateaus

Analogy to rising F_{ν} : X-ray Plateaus

Possible solutions:

 Evolution of shock microphysical parameters (JG, Konigl & Piran 2006)

Analogy to rising F_{ν} : X-ray Plateaus

- Evolution of shock microphysical parameters (JG, Konigl & Piran 2006)
- Energy injection into external shock:
- 1. long-lived relativistic wind

Analogy to rising F_{ν} : X-ray Plateaus

- Evolution of shock microphysical parameters (JG, Konigl & Piran 2006)
- Energy injection into external shock:
- 1. long-lived relativistic wind
- 2. slower ejecta catching up (Sari & Meszaros 00; Nousek+ 06; JG & Kumar 06)

Analogy to rising F_{ν} : X-ray Plateaus

- Evolution of shock microphysical parameters (JG, Konigl & Piran 2006)
- Energy injection into external shock:
- 1. long-lived relativistic wind
- 2. slower ejecta catching up (Sari & Meszaros 00; Nousek+ 06; JG & Kumar 06)

Analogy to rising F_{ν} : X-ray Plateaus

- Evolution of shock microphysical parameters (JG, Konigl & Piran 2006)
- Energy injection into external shock:
- 1. long-lived relativistic wind

Analogy to rising F_{ν} : X-ray Plateaus

- Evolution of shock microphysical parameters (JG, Konigl & Piran 2006)
- Energy injection into external shock:
- 1. long-lived relativistic wind

Analogy to rising F_{ν} : Off-Axis Viewing

- The emission is initially strongly beamed away from our L.o.S
- F_{v} rises as beaming cone widens
- When beaming cone reaches LoS F_{ν} peaks & approaches on-axis F_{ν}
- The rise is much more gradual for hydrodynamic simulations due to slower matter at the jet's sides with non-radial velocities

Analogy to rising F_{ν} : Off-Axis Viewing

- The emission is initially strongly beamed away from our L.o.S
- F_{v} rises as beaming cone widens
- When beaming cone reaches LoS F_{ν} peaks & approaches on-axis F_{ν}
- The rise is much more gradual for hydrodynamic simulations due to slower matter at the jet's sides with non-radial velocities

- The lightcurves leave a lot of degeneracy between models
- The degeneracy may be lifted by calculation the afterglow images & polarization (e.g. Nakar & Piran 2018; Nakar et al. 2018)
- We considered 4 different models including both main types
- ♦ Sph+E_{inj}: Spherical with energy injection $E(>u=\Gamma\beta) \propto u^{-6}$, 1.5<u<4
- QSph+E_{inj}: Quasi-Spherical + energy injection $E(>u) \propto u^{-s}$, $u_{min,0} = 1.8$ $u_{max,0} = 4$,

- The lightcurves leave a lot of degeneracy between models
- The degeneracy may be lifted by calculation the afterglow images & polarization (e.g. Nakar & Piran 2018; Nakar et al. 2018)
- We considered 4 different models including both main types
- ♦ GJ: Gaussian Jet (in ε = dE/dΩ, $Γ_0-1$) $Γ_c = 600$, $θ_c = 4.7^\circ$
- ♦ PLJ: Power-Law Jet; $ε = ε_c Θ^{-a}$, $Γ_0 1 = (Γ_c 1)Θ^{-b}$, $Θ = [1 + (θ/θ_c)^2]^{1/2}$, $Γ_c = 100$, $θ_c = 5^\circ$, a = 4.5, b = 2.5
- As there is a lot of freedom we fixed: p = 2.16, $\varepsilon_B = n_0 = 10^{-3}$, $\theta_{obs} = 27^{\circ}$

Tentative fit to GRB170817A afterglow data (radio to X-ray)

New data that came out established a peak at $t_{peak} \sim 150 \text{ days}$

• The jet models decay faster (closer to post-peak data: $F_{v} \propto t^{-2.2}$)

- The flux centroid motion: a potentially powerful diagnostic
- It may be hard to tell apart models based on the image size alone, but a much higher axis-ratio is expected for jet models

- The flux centroid motion: a potentially powerful diagnostic
- It may be hard to tell apart models based on the image size alone, but a much higher axis-ratio is expected for jet models

- The flux centroid motion: a potentially powerful diagnostic
- It may be hard to tell apart models based on the image size alone, but a much higher axis-ratio is expected for jet models

- The flux centroid motion: a potentially powerful diagnostic
- It may be hard to tell apart models based on the image size alone, but a much higher axis-ratio is expected for jet models

- The flux centroid motion: a potentially powerful diagnostic
- It may be hard to tell apart models based on the image size alone, but a much higher axis-ratio is expected for jet models

- Jet angular structure & θ_{obs} well constrained \Rightarrow breaks degeneracies
- Assuming a shock-produce B-field with $b \equiv 2\langle B_{\parallel}^2 \rangle / \langle B_{\perp}^2 \rangle$ (JG & königl 03; Gill & JG 18)

- Jet angular structure & θ_{obs} well constrained \Rightarrow breaks degeneracies
- Assuming a shock-produce B-field with $b \equiv 2\langle B_{\parallel}^2 \rangle / \langle B_{\perp}^2 \rangle$ (JG & königl 03; Gill & JG 18)

- Jet angular structure & θ_{obs} well constrained \Rightarrow breaks degeneracies
- Assuming a shock-produce B-field with $b \equiv 2\langle B_{\parallel}^2 \rangle / \langle B_{\perp}^2 \rangle$ (JG & königl 03; Gill & JG 18)

More realistic assumptions \Rightarrow B-field in collisionless shocks: (Gill & JG 2020)

- B-field evolution by faster radial expansion: $L'_r / L'_{\theta,\phi} \propto \chi^{(7-2k)/(8-2k)}$
- B-field isotropic in 3D with $B'_r \rightarrow \xi B'_r$ (Sari 1999); $\xi = \xi_f \chi^{(7-2k)/(8-2k)}$

More realistic assumptions \Rightarrow B-field in collisionless shocks: (Gill & JG 2020)

- B-field evolution by faster radial expansion: $L'_r / L'_{\theta,\phi} \propto \chi^{(7-2k)/(8-2k)}$
- B-field isotropic in 3D with $B'_r \rightarrow \xi B'_r$ (Sari 1999); $\xi = \xi_f \chi^{(7-2k)/(8-2k)}$

Predicted Off-Axis Lightcurves from Structured Jets

(Beniamini, JG & 2020; Beniamini, Gill & JG 2022)

- A general investigation of **Power-Law** (+Gaussian) **Jets**
- Provide detailed analytic lightcurves
- We find two main lightcurve types: double or single peaked

Double peaked LC: $\theta_{obs} < \theta_*$

 10^{6}

 $\theta_*\Gamma_0(\theta_*) = 1$

Predicted Off-Axis Lightcurves from Structured Jets

(Beniamini, JG & 2020; Beniamini, Gill & JG 2022)

- Map the most relevant parameter space from simulations of long / short GRB jets breaking out of the star / merger ejecta
 - \Rightarrow \Rightarrow Consider different external density profiles
- Consider both shallow & steep jet angular profiles

Predicted Off-Axis Lightcurves from Structured Jets

(Beniamini, JG & 2020; Beniamini, Gill & JG 2022)

Shallow vs. Steep Jet:

Constraining the Opacity of the Universe

- γ -rays from distant sources can pair produce ($\gamma \gamma \rightarrow e^+ e^-$) on the way to us with the extragalactic background light (EBL)
- This can test the transparency of the Universe and constrain EBL models (or the massive star formation rate at $z \gtrsim 1$)
- GRBs are already competitive with AGN, & probe higher z
- EBL likely detected (with blazars: LAT+IACTs; Dominguez+13; Acciari+19)

(using GRB was first suggested

by Amelino-Camelia et al. 1998)

Why GRBs? Very bright & short transient events, at cosmological distances, emit high-energy γ-rays (D. Pile, Nature Photonics, 2010)

mmmm

AURORE SIMONNE

GRB 090510 is much better than the rest (short, hard, very fine time structure)

- GRB 090510 is much better than the rest (short, hard, very fine time structure)
- Abdo+ 2009, Nature, 462, 331: 1st direct time-of-flight limit beyond Plank scale on linear (n = 1) energy dispersion:

$$v_{\rm ph} / c \approx 1 \pm \frac{1}{2} (1+n) \left(E_{\rm ph} / E_{\rm QG,n} \right)^n$$

(robust, conservative, 2 independent methods)

- GRB 090510 is much better than the rest (short, hard, very fine time structure)
- Abdo+ 2009, Nature, 462, 331: 1st direct time-of-flight limit beyond Plank scale on linear (n = 1) energy dispersion:

$$v_{\rm ph} / c \approx 1 \pm \frac{1}{2} (1+n) \left(E_{\rm ph} / E_{\rm QG,n} \right)^n E_{\rm QG,1}$$

 $E_{\rm QG,1} > 1.2E_{\rm Planck}$

(robust, conservative, 2 independent methods)

 Vasileiou+ 2013: 3 different methods, 4 GRBs (090510 is still the best by far), the limits improved by factors of a few

- GRB 090510 is much better than the rest (short, hard, very fine time structure)
- Abdo+ 2009, Nature, 462, 331: 1st direct time-of-flight limit beyond Plank scale on linear (n = 1) energy dispersion:

 $v_{\rm ph} / c \approx 1 \pm \frac{1}{2} (1 + n) (E_{\rm ph} / E_{\rm QG,n})^n \quad E_{\rm QG,1} > 1.2 E_{\rm Planck}$

(robust, conservative, 2 independent methods)

- Vasileiou+ 2013: 3 different methods, 4 GRBs (090510 is still the best by far), the limits improved by factors of a few
- Vasileiou+ 2015, Nature Phys., 11, 344: stochastic LIV – motivation: space-time foam (1st Planck-scale limit of its kind)

- GW170817 is unique with a wide range of implications
- GW speed: $\left|\frac{v_{GW}}{c} 1\right| \leq 4 \cdot 10^{-16}$; Kilonova: r-process elements
- Merger Remnant: BH or HMNS → BH \Rightarrow M_{TOV} $\lesssim 2.17 M_{\odot}$

- GW170817 is unique with a wide range of implications
- GW speed: $\frac{v_{GW}}{c} 1 \le 4 \cdot 10^{-16}$; Kilonova: r-process elements
- Merger Remnant: BH or HMNS → BH \Rightarrow M_{TOV} $\lesssim 2.17M_{\odot}$
- Two main types of explanations for the rising afterglow flux energy distribution with proper velocity (r) or with angle (θ)

- GW170817 is unique with a wide range of implications
- GW speed: $\frac{v_{GW}}{c} 1 \le 4 \cdot 10^{-16}$; Kilonova: r-process elements
- Merger Remnant: BH or HMNS → BH \Rightarrow M_{TOV} $\lesssim 2.17 M_{\odot}$
- Two main types of explanations for the rising afterglow flux energy distribution with proper velocity (r) or with angle (θ)
- Possible diagnostics to distinguish between them
 - The post-peak flux decay slope
 - Flux centroid motion or image axis ratio

- GW170817 is unique with a wide range of implications
- GW speed: $\frac{v_{GW}}{c} 1 \le 4 \cdot 10^{-16}$; Kilonova: r-process elements
- Merger Remnant: BH or HMNS → BH \Rightarrow M_{TOV} $\lesssim 2.17 M_{\odot}$
- Two main types of explanations for the rising afterglow flux energy distribution with proper velocity (r) or with angle (θ)
- Possible diagnostics to distinguish between them
 - The post-peak flux decay slope
 - Flux centroid motion or image axis ratio
- Later flux centroid motion observations: $\beta_{app} = 4.1 \pm 0.5$

- GW170817 is unique with a wide range of implications
- GW speed: $\frac{v_{GW}}{c} 1 \le 4 \cdot 10^{-16}$; Kilonova: r-process elements
- Merger Remnant: BH or HMNS → BH \Rightarrow M_{TOV} $\lesssim 2.17M_{\odot}$
- Two main types of explanations for the rising afterglow flux energy distribution with proper velocity (r) or with angle (θ)
- Possible diagnostics to distinguish between them
 - The post-peak flux decay slope
 - Flux centroid motion or image axis ratio
- Later flux centroid motion observations: $\beta_{app} = 4.1 \pm 0.5$
- Polarization UL: shock-produced B-field $0.57 \leq \xi_0 \leq 0.89$

- GW170817 is unique with a wide range of implications
- GW speed: $\frac{v_{GW}}{c} 1 \le 4 \cdot 10^{-16}$; Kilonova: r-process elements
- Merger Remnant: BH or HMNS → BH \Rightarrow M_{TOV} $\lesssim 2.17M_{\odot}$
- Two main types of explanations for the rising afterglow flux energy distribution with proper velocity (r) or with angle (θ)
- Possible diagnostics to distinguish between them
 - The post-peak flux decay slope
 - Flux centroid motion or image axis ratio
- Later flux centroid motion observations: $\beta_{app} = 4.1 \pm 0.5$
- Polarization UL: shock-produced B-field $0.57 \leq \xi_0 \leq 0.89$
- Predicted off-axis lightcurves from structured jets

- GW170817 is unique with a wide range of implications
- GW speed: $\left|\frac{v_{GW}}{c} 1\right| \leq 4 \cdot 10^{-16}$; Kilonova: r-process elements
- Merger Remnant: BH or HMNS → BH \Rightarrow M_{TOV} $\lesssim 2.17 M_{\odot}$
- Two main types of explanations for the rising afterglow flux energy distribution with proper velocity (r) or with angle (θ)
- Possible diagnostics to distinguish between them
 - The post-peak flux decay slope
 - Flux centroid motion or image axis ratio
- Later flux centroid motion observations: $\beta_{app} = 4.1 \pm 0.5$
- Polarization UL: shock-produced B-field $0.57 \leq \xi_0 \leq 0.89$
- Predicted off-axis lightcurves from structured jets
- GRBs can also constrain Lorentz Invariance Violation or the EBL

The End