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1.1 Introduction

We survey approximation algorithms and hardness of approximation results for the Survivable Network

problem in which we seek a low edge-cost directed/undirected subgraph that satisfies prescribed connectivity

demands w.r.t. a given “connectivity measure”. These problems include the following well known problems:

Minimum Spanning Tree, Traveling Salesman Problem, Steiner Tree, Steiner Forest, and their directed variants.

These are examples of low connectivity Survivable Network problems. In this survey we will consider high

connectivity Survivable Network problems; some examples are Min-Cost k-Flow, k-Inconnected Subgraph, k-

Connected Subgraph, and Rooted Survivable Network. See previous surveys on such problem in [30, 26].

Many common connectivity measures can be defined by the following unified framework. Let G = (V,E)

be a (possibly directed) graph. For Q ⊆ V , the Q-connectivity λQG(s, t) of a node pair (s, t) is the maximum

number of st-paths such that no two of them have an edge or a node in Q \ {s, t} in common. The case

Q = ∅ is the case of edge-connectivity, and we use the notation λG(s, t) := λ∅G(s, t); the case Q = V is

the case of node-connectivity, and we use the notation κG(s, t) := λVG(s, t). Even more generally, given

node capacities {qv : v ∈ V }, the q-connectivity λqG(s, t) is the maximum number of pairwise edge disjoint

st-paths such that for every v ∈ V \{s, t} at most qv of the paths contain v; Q-connectivity is the particular

case when qv ∈ {1,∞} for all v ∈ V and Q = {v ∈ V : qv = 1}. We will consider mainly the node-

connectivity case Q = V , when the paths are required to be pairwise internally node disjoint. However,

most algorithms presented can be adjusted to the q-connectivity case with the same approximation ratio.
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Given positive integral connectivity demands {rst ≥ 1 : st ∈ D} over a set D of demand pairs on V

and Q ⊆ V we say that G satisfies r if λQG(s, t) ≥ rst for all st ∈ D. Our problem is:

Survivable Network

Input: A (multi)graph Ĝ = (V, Ê) with edge costs {ce : e ∈ Ê}, Q ⊆ V , and connectivity demands

{rst > 0 : st ∈ D} on a set D ⊆ V × V of demand pairs.

Output: A minimum cost subgraph of Ĝ that satisfies r.

Assume that the input numbers are integers bounded by a polynomial in n = |V |. A node is a terminal

if it belongs to some demand pair. Let T denote the set of terminals. An important Q-connectivity measure

is element-connectivity, when Q ⊆ V \T . Let k-Survivable Network be the restriction of Survivable Network

to instances with demands at most k, and unless stated otherwise k = max
st∈D

rst is the maximum demand.

We may assume that the input graph Ĝ is complete, by assigning infinite costs to “forbidden” edges.

Under this assumption, we consider four types of edge costs:

• {0, 1}-costs: Here we are given a graph G, and the goal is to find a minimum size augmenting edge

set J of new edges (any edge is allowed, and parallel edges are allowed) such that G ∪ J satisfies r.

• {1,∞}-costs: Here we seek a subgraph of Ĝ with minimum number of edges that satisfies r.

• Metric Costs: The costs satisfy the triangle inequality cuv ≤ cuw + cwv for all u, v, w ∈ V .

• General Costs: The costs are arbitrary non-negative integers or ∞.

For each type of costs, we have the following types of demands:

• Uniform demands: rst = k for all s, t ∈ V ; this is the k-Connected Subgraph problem.

• Rooted demands: All pairs in D share the same node s; this is the Rooted Survivable Network prob-

lem. If the demands are rts = k for all t ∈ T \ {s} then we get rooted subset uniform demands

and the Subset k-Inconnected Subgraph problem.

• Subset uniform demands: rst = k for all s, t ∈ T ; this is the Subset k-Connected Subgraph problem.

• Arbitrary (non-negative) demands.
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We mention two important cases of Rooted Survivable Network. In the Min-Cost k-Flow problem |D| = 1.

This problem admits a polynomial time algorithm for both directed and undirected graphs, c.f. [15, 44].

Another case is the k-Inconnected Subgraph problem where the demands are rts = k for every t ∈ V \ {s};

this is a particular case of the Subset k-Inconnected Subgraph problem, when T = V . For directed graphs,

k-Inconnected Subgraph can be solved in polynomial time [18] (see also [14]).

Survivable Network admits a trivial approximation ratio min{|D|, O(n)}. Ratio |D| is obtained by ap-

plying the above Min-Cost k-Flow algorithm for each pair in D and taking the union of the |D| computed

edge sets. Ratio O(n) is obtained by randomized rounding of an LP-relaxation, see Section 1.2.

Problem Demands Approximability

directed/undirected Shortest Path (Min-Cost 1-Flow) rooted, |D| = 1 in P

Minimum Spanning Tree (undirected 1-Connected Subgraph) uniform/rooted, T = V in P

Steiner Tree (undirected Subset 1-Connected Subgraph) rooted/subset uniform ln 4 + ε [3] ([21])

Steiner Forest (undirected 1-Survivable Network) general 2 [1] ([22])

Minimum Arborescence (directed 1-Inconnected Subgraph) rooted, T = V in P

Strongly Connected Subgraph (directed 1-Connected Subgraph) uniform 2 for general costs

3/2 for {1,∞}-costs [45]

Directed Steiner Tree (directed Rooted 1-Survivable Network) rooted uniform O
(

ℓ3|T |2/ℓ
)

in O
(

|T |2ℓnℓ
)

time

[47, 33, 4, 24], Ω(ln2 n) [23]

Directed Steiner Forest (directed 1-Survivable Network) general nε ·min
{

|D|1/2, n2/3
}

[5, 2] ([11])

Φ [10]

Table 1.1: Known approximability status of 1-Survivable Network problems. References in parenthesis give

a simplified proof, or a slight improvement needed to achieve the approximation ratio/threshold stated.

In Table 1 we list famous particular cases of 1-Survivable Network. For a survey on the k-Connected

Subgraph problem (the case of uniform demands) see [36]. For the metric costs case see the original paper of

Cheriyan and Vetta [8]. Here we consider all the other variants of the problem. We focus on node-connectivity

and k arbitrary, although there are many interesting results for edge-connectivity and element-connectivity,

as well as for small requirements. We survey only approximation algorithms (for polynomially solvable cases

see [15, 17]), with the currently best known approximation ratios, as summarized in Table 2, where, for

comparison, we also include results for edge-connectivity.
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c,r Node-Connectivity Edge-Connectivity

Undirected Directed Undirected Directed

{0, 1},R,RU O(min{ln2 k, lnn}) [31] O(lnn) [31, 37] in P [13] O(lnn) [31]

Ω(lnn) [37] Ω(lnn) [13] Ω(lnn) [13]

{0, 1},SU |T | ln k
|T |−k O(min{ln2 k, lnn}) [42] |T | ln k

|T |−k ·O(lnn) [42] in P [13] O(lnn) [31]

Φ [29, 38] Φ [29, 38] Ω(lnn) [13]

{0, 1},G k ·O(min{ln2 k, lnn}) [41, 31] O(k lnn) [31] in P [13] O(lnn) [31]

Φ [29, 38] Φ [29, 38] Ω(lnn) [13]

{1,∞},R O(k2) [40], Φ [7] Φ [7] 2 [25] Φ [7]

{1,∞},RU O(k ln k) [40], Φ [7] Φ [7] 2 [25] Φ [7]

{1,∞},SU |T |
|T |−kO(k ln k) [42], Φ [29] Φ [10] 2 [25] Φ [10]

{1,∞},G O(k3 ln |T |) [9], Φ [29] Φ [10] 2 [25] Φ [10]

MC,R O(ln k) [8] Φ [7] 2 [25] Φ [7]

MC,RU,SU 24 [8] Φ [7] 2 [25] Φ [7]

MC,G O(ln k) [8] Φ [10] 2 [25] Φ [10]

GC,R O(k2) [40], Φ [7] Φ [7] 2 [25] Φ [7]

GC,RU O(k ln k) [40], Φ [7] Φ [7] 2 [25] Φ [7]

GC,SU |T |
|T |−kO(k ln k) [42], Φ [29] Φ [10] 2 [25] Φ [10]

GC,G O(k3 ln |T |) [9], Φ [29] Φ [10] 2 [25] Φ [10]

Table 2.2: Known approximability status of Survivable Network problems. MC and GC stand for metric and

general costs, R, RU, SU, and G stand for rooted, rooted uniform, subset uniform, and general demands,

respectively. All problems admit ratio min{|D|, O(n)}. Here Φ = 2ln
1−ǫ n, meaning that the problem cannot

be approximated within 2ln
1−ε n for any fixed ǫ > 0 (unless NP has quasi-polynomial time algorithms).
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The approximation lower bounds results in the tables are given in terms of n. In terms of the parameters

k and |D|, the following lower bounds are established in [34] for rooted demands: k1/2−ǫ for directed graphs,

k1/10−ǫ for undirected graphs, and |D|1/4−ǫ for both directed and undirected graphs. For undirected graphs

and arbitrary demands [34] shows a better bound k1/6−ǫ.

The reader may observe that most of the results for the edge-connectivity case follow from 4 basic

algorithms. In the undirected case we have ratio 2 for almost all variants by the seminal work of Jain [25],

except that in the case of {0, 1}-costs we have a polynomial time algorithm by the work of Frank [13]. In

the directed case, we have the trivial ratio min{|D|, O(n)} for almost all variants, except that in the case

of {0, 1}-costs ratio O(lnn) is achievable using Set-Cover techniques [31]. Unfortunately, node-connectivity

Survivable Network problems are more complicated, and often one has to decompose the problem into a

“small” number of subproblems on which traditional methods can be applied.

We mention some additional results not appearing in the tables. Survivable Network admits ratio 2 for

k = 2 [12], but no constant ratio is known for k = 3. Element-connectivity Survivable Network admits

ratio 2 [12]; in the case of {0, 1}-costs the problem is NP-hard for k = 2 [27], and admits ratios 7/4 for

arbitrary demands and 3/2 for {0, 1, 2} or {0, k} demands [38]. When the sum of the demands is a constant,

directed Rooted Survivable Network admits a polynomial time algorithm [7]. In the (undirected) Multiroot

Connectivity problem the demands are max{rs, rt} for given non-negative integers {rv : v ∈ V }. The best

known ratios for this problem are: 2(k − 1) for general costs, 3 for metric costs, and 2 for {1,∞}-costs [6].

Here is some notation used. An edge from u to v is denoted by uv. A uv-path is a path from u to v. For

arbitrary sets A,B of nodes and edges (or graphs) A \B is the set (or graph) obtained by deleting B from

A, where deletion of a node implies also deletion of all the edges incident to it; similarly, A ∪ B is the set

(graph) obtained by adding B to A. For real values {xu : u ∈ U} let x(U) =
∑

u∈U

xu and max(U) = max
u∈U

xu.

Organization. In the next section 1.2 we give some reductions between various versions of our problem.

In Section 1.3 we describe an O(k3 lnn)-approximation algorithm for undirected Survivable Network. In

Section 1.4 we give a Biset-LP formulation of Survivable Network problems, and some properties of relevant

biset families. In Section 1.5 we consider rooted and subset uniform demands, while in Section 1.6 we

consider the {0, 1}-costs case. We conclude in Section 1.7 with some open problems.
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1.2 Some simple reductions

Note that for directed graphs, the node-connectivity and the edge-connectivity cases have often the same

approximability in Table 2. The following statement shows that this is not a coincidence.

Lemma 1.1 For directed graphs, if edge-connectivity Survivable Network admits ratio ρ(n) then q-connectivity

Survivable Network admits ratio ρ(2n).

Proof: Given a q-connectivity instance, obtain an edge-connectivity instance by a standard conversion of

node capacities to edge-capacities: Replace every v ∈ V by two nodes vout, vin connected by qv edges from

vin to vout of cost 0 each, and redirect the heads of the edges in Ê entering v to vin and the tails of the

edges in Ê leaving v to vout, keeping costs. The demands are r′(sout, tin) = r(s, t). Then J is a feasible

solution to the q-connectivity instance iff J ′ = {uoutvin : uv ∈ E} ∪ {vinvout : v ∈ V } is a feasible solution

to the edge-connectivity instance, and clearly both solutions have the same cost. ✷

As an application of Lemma 1.1 we show ratio O(n) for edge-connectivity Survivable Network, and via

Lemma 1.1 obtain the same ratio for q-connectivity. For A ⊆ V let fr(A) = max{rst : s ∈ A, t ∈ V \ A},

where the maximum or a sum taken over the empty set is defined to be 0. Let δ(A) denote the set of edges

in Ê going from A to V \A. Consider the Cut-LP for directed edge-connectivity Survivable Network

min







∑

e∈Ê

cexe :
∑

e∈δ(A)

xe ≥ fr(A) ∀A ⊆ V, 0 ≤ xe ≤ 1 ∀e ∈ E







This LP can be solved in polynomial time by the ellipsoid method. As the number of constraints in the LP

is 2n, we can get (expected) ratio O(ln 2n) = O(n) via randomized rounding; the computed solution will be

feasible with high probability.

Note that in Table 2 the {1,∞}-costs case has the same approximability as the general costs case. This

is also not a coincidence, since for problems we consider, the general costs case can be reduced to the

{1,∞}-costs case with a small loss in the approximation ratio, as follows. Assume that the set of 0 cost

edges is not a feasible solution. Multiply the costs by M = n2/ε, then assign cost 1 to 0 cost edges, and

replace every edge e = uv by a uv-path of length ce of 1 cost edges. Any feasible solution of cost C is

transformed into a solution of cost between MC and MC + n2 =M(C + ε), which causes arbitrarily small

loss in the ratio.
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We now show that for high values of k, the directed and undirected variants of Survivable Network have

similar approximability. Let ρdir(k, n) and ρund(k, n) denote the best possible approximation ratio for the

directed and undirected k-Survivable Network problem on graphs on n nodes, respectively.

Lemma 1.2 ρund(k, n) ≤ 2ρdir(k, n).

Proof: Given an undirected Survivable Network instance I = (Ĝ,Q, c, r), obtain a “bidirected” instance

I ′ = (Ĝ′, Q, c′, r) of directed Survivable Network by replacing every edge uv of Ĝ by the two opposite directed

edges uv, vu each of the same cost as uv. Then compute a ρ approximate solution J ′ to I ′ and output its

underlying graph J . It is easy to see that J is a feasible solution for I. Furthermore, if G is an arbitrary

subgraph of Ĝ, and G′ is the corresponding bidected subgraph of Ĝ′, then c′(G′) = 2c(G), and G is a

feasible solution for I if G′ is a feasible solution for I ′. Thus opt′ ≤ 2opt, where opt and opt′ denote the

optimal solution value of I and I ′, respectively. Consequently, c(J) ≤ c′(J ′) ≤ ρ · opt′ ≤ 2ρ · opt. ✷

In the reduction in the proof of Lemma 1.2 it is also possible to “bidirect” the demands.

A pair (A,B) of disjoint subsets of V is called a setpair; (A,B) is an st-setpair if s ∈ A and t ∈ B.

For a graph G = (V,E) let dG(A,B) = dE(A,B) denote the number of edges in G going from A to B.

Recall that κG(s, t) denotes the maximum number of pairwise internally disjoint st-paths in G. If (A,B)

is an st-setpair then κG(s, t) ≤ dG(A,B) + |V \ (A ∪ B)|, and we say that (A,B) is st-tight in G if

κG(s, t) = dG(A,B) + |V \ (A ∪ B)|. The node-connectivity version of Menger’s Theorem states that for

any s, t ∈ V an st-tight setpair exists, namely

κG(s, t) = min{dG(A,B) + n− |A ∪B| : (A,B) is an st-setpair in G}

Theorem 1.1 (Lando & Nutov [35]) ρdir(k, n) ≤ ρund(k+n, 2n), and this is so also if both directed and

undirected problems are restricted to rooted demands, or to rooted uniform demands, or to {0, 1}-costs.

In the rest of this section we prove Theorem 1.1. Let G = (V,E) be a directed graph. The bipartite

graph of G has node set V ′ ∪ V ′′ where V ′, V ′′ are copies of V , and edge set {u′v′′ : uv ∈ E}, where for

v ∈ V we denote by v′ and v′′ the copies of v in V ′ and V ′′, respectively. The padded graph of G is

obtained by adding to the bipartite graph of G a padding edge set of cliques on each of V ′ and V ′′, and

the matching M = {v′v′′ : v ∈ V } (see Fig. 1.1). Given an instance Ĝ, c, r of directed k-Survivable Network,
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V
clique of cost 0

clique of cost 0
V

"u"

b v’ u ’ ’’

a" b" v"

a’

Figure 1.1: The padded bipartite graph; edges in M are shown by thin lines.

obtain an instance of undirected (k + n)-Survivable Network Ĥ, c′, r′, where Ĥ is the padded graph of Ĝ.

The demands and the costs are derived via the natural bijection between ordered node pairs (u, v) of Ĝ and

(u′, v′′) of Ĥ, while keeping costs but shifting the demands by n; namely, the demand of the pair (s′, t′′) is

rst + n and the costs are: c′(u′v′′) = c(uv) whenever uv ∈ Ê and the padding edges have cost 0. Note that

if G is a spanning subgraph of Ĝ then the padded graph H of G is a spanning subgraph of Ĥ, and G and

H have the same cost. Thus to finish the proof of Theorem 1.1 it is sufficient to prove the following.

Lemma 1.3 ([35]) If H is the padded graph of a directed graph G = (V,E) on n nodes, then κH(s′, t′′) =

κG(s, t) + n for all s, t ∈ V .

Proof: Let (A,B) be an st-tight setpair in G. Then (A′, A′′) is an s′t′′-setpair in H, where A′ is the copy

of A in V ′ and B′′ is the copy of B in V ′′. Note that dG(A,B) = dH(A′, B′′). This implies κH(s′, t′′) ≤

dH(A′, B′′) + 2n− |A′ ∪B′′| = κG(s, t) + n. We prove the inverse inequality. Let (A′ ∪A′′, B′ ∪B′′) be an

s′t′′-tight setpair in H with |A′| + |A′′| + |B′| + |B′′| minimal, where A′, B′ ⊆ V ′ and A′′, B′′ ⊆ V ′′. We

claim that A′′ = ∅ and B′ = ∅; otherwise, if say there is a′′ ∈ A′′ then excluding a′′ from A′′ decreases

A′′ by exactly 1 and decreases dH(A′ ∪ A′′, B′ ∪ B′′) by at least |B′′| ≥ 1. Furthermore, no node has

a copy both in A′ and B′′, by a similar argument. Hence A′ is a copy in V ′ of some A ⊆ V , B′′ is

a copy in V ′′ of some B ⊆ V , and A and B are disjoint; thus (A,B) is an st-setpair. Consequently,

κH(s′, t′′) = dH(A′, B′′) + 2n− |A′ ∪B′′| = dG(A,B) + n+ n− |A ∪B| ≥ n+ κG(s, t). ✷
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1.3 General demands and costs

Since for directed graphs Survivable Network has strong inapproximability results already for small values

of k, we will focus on undirected graphs and on variants that have good ratios for small values of k.

Theorem 1.2 (Chuzhoy & Khanna [9]) Undirected Survivable Network admits ratio O(k3 ln |T |).

The idea is to decompose the problem into O(k3 ln |T |) element connectivity Survivable Network problems.

Definition 1.1 A set family F on a groundset T is k-resilient if for any pair (K,L) of disjoint subsets

of T with |L| = 2 and |K| ≤ k, there exists S ∈ F such that L ⊆ S and K ⊆ T \ S. Let ρn(k) denote the

minimum size of a k-resilient set-family on a groundset of n elements.

Lemma 1.4 Suppose that for a Survivable Network instance we are given on the set T of terminals a

(k − 1)-resilient family F of size ρ. Then such instance admits ratio 2ρ.

Proof: For each Ti ∈ F , compute a 2-approximate solution Ei using the algorithm of [12] to the instance

of element connectivity Survivable Network with Qi = V \ Ti and the demands restricted to the pairs

in Ti. Let E =

ρ
⋃

i=1

Ei be the union of the solutions computed. Any feasible solution to the Survivable

Network instance is also feasible for each element connectivity instance, hence, c(E) is at most 2ρ times

the optimal solution value of the Survivable Network instance. To prove that G = (V,E) is a feasible

solution, we show that for any st ∈ D and any st-setpair (A,B), dE(A,B) + n − |A ∪ B| ≥ rst. If

n − |A ∪ B| ≥ k we are done, so assume that n − |A ∪ B| ≤ k − 1. Let Ti ∈ F satisfy {s, t} ⊆ Ti and

V \ (A ∪ B) ⊆ T \ Ti, so V \ (A ∪ B) ⊆ V \ Ti = Qi. Then dEi
(A,B) + n − |A ∪ B| ≥ rst, since Ei is a

feasible solution to the corresponding element-connectivity Survivable Network instance. However, Ei ⊆ E,

and thus dE(A,B) ≥ dEi
(A,B). Consequently, dE(A,B) + n− |A ∪B| ≥ rst, as required. ✷

We now show that there exists a k-resilient family of size O(k3 ln |T |) and how to find such a family.

Theorem 1.3 (Chuzhoy & Khanna [9]) ρn(k) = O(k3 lnn), and there exists a randomized polynomial

time algorithm that computes a k-resilient family within this bound, with high probability.

Proof: If n ≤ 3k + 1 then the subsets of T of size 2 form a k-resilient family of size O(k2), so assume that
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n ≥ 3k+2. Also, by augmenting the groundset T by a set of k “dummy” elements and revising the notation

to n← n+ k, we may consider sets K of size exactly k.

We will seek a “small” resilient family in which all sets have the same size p. We cast this problem as a

Hitting-Set problem in a hypergraph (V, E) where V is the family of the subsets of T of size p and E is the

family of pairs (K,L) of disjoint subsets of T with |L| = 2 and |K| = k, namely

V = {S : S ⊆ T, |S| = p} E = {(K,L) : K,L ⊆ V,K ∩ L = ∅, |L| = 2, |K| = k} .

We say that S ∈ V hits (K,L) ∈ E if L ⊆ S and K ⊆ T \ S; F ⊆ V is a hitting set of E if for every

(K,L) ∈ E there is S ∈ V that hits (K,L). By Definition 1.1, F ⊆ V is k-resilient if and only if F is a

hitting set of E . Thus ρn(k) is bounded by the minimum size of a hitting set of E . A fractional hitting

set of E is a function h : V −→ [0, 1] such that
∑

{h(S) : S hits (K,L)} ≥ 1 for every (K,L) ∈ E ; the value

of h is
∑

S∈V h(S). It is known that if E has a fractional hitting set of value τ , then E has a hitting set of

size O(τ ln |E|). Our next goal is to show that E has a low value fractional hitting set, and to bound ln |E|.

Claim 1.1 |V| =
(

n
p

)

, |E| =
(

n
k

)(

n−k
2

)

, and the size of each hyperedge (K,L) ∈ E is s =
(

n−k−2
p−2

)

.

Proof: |V| equals the number
(

n
p

)

of choices of p elements from n elements. |E| equals the number
(

n
k

)

of

choices of a set K of size k multiplied by the number
(

n−k
2

)

of choices of a pair L from the set V \ K of

size n− k. For every (K,L) ∈ E the size of the set {S ⊆ V : |S| = p, L ⊆ S,K ⊆ V \ S} equals the number

(

n−k−2
p−2

)

of choices of the set S \ L of size p− 2 from the set T \ (K ∪ L) of size n− k − 2. ✷

We have
(

n
k

)k
≤

(

n
k

)

≤
(

n
k

)k
· ek. In particular, ln |E| = O(k lnn).

Assigning value 1/s to each S ∈ V gives a fractional hitting set of value |V|/s. Denote m = n−k. Then:

|V|

s
=

(

n
p

)

(

m−2
p−2

) =
n!

p!(n− p)!
·
(p− 2)!(m− p)!

(m− 2)!
=
m(m− 1)

p(p− 1)
·

n!

(n− p)!
·
(m− p)!

m!
≤

m2

(p− 1)2

p
∏

i=1

n− i+ 1

m− i+ 1

Note that for 1 ≤ i ≤ p we have n−i+1
m−i+1 = 1 + n−m

m−i+1 ≤ 1 + k
n−k−p . Let us choose p such that k

n−k−p = 1
p ,

so p = n−k
k+1 ; assume that p is an integer, as adjustment to floors and ceilings only affects by a small amount

the constant hidden in the O(·) term. Since (1 + 1/p)
p ≤ e we obtain

p
∏

i=1

n− i+ 1

m− i+ 1
≤

(

1 +
1

p

)p

≤ e .
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Since we assume that n ≥ 3k + 2, we have n−k
k+1 ≥ 2 and thus m

p−1 ≤ 2(k + 1). Consequently, we get that

|V|
s · ln |E| = O(k3 lnn). This implies that a standard greedy algorithm for Hitting Set, produces a k-resilient

family of size O
(

k3 lnn
)

, There is some difficulty to implement this algorithm in time polynomial in n; thus

we use a randomized algorithm for Hitting-Set, by rounding each entry to 1 with probability determined by

our fractional hitting set. It is known that repeating this rounding 2⌈ln |E|⌉ times gives a hitting set w.h.p.,

and clearly its expected size is 2⌈ln |E|⌉ times the value of the fractional hitting set. In our case, the value

of every S ∈ V is 1/s = 1/
(

n−k−2
p−2

)

. Thus we just need to sample a set S of size p = n−k
k+1 with probability

1/s, independently, 2⌈ln |E|⌉ = O(k lnn) times. ✷

1.4 Biset functions and Survivable Network Augmentation problems

1.4.1 Biset formulation of Survivable Network problems

In Section 1.2 we formulated Mengers’s Theorem in terms of setpairs. It would be more convenient to

consider instead of a setpair (A,B) the pair of sets (A, V \B) called a “biset”, defined as follows.

Definition 1.2 An ordered pair A = (A,A+) of subsets of V with A ⊆ A+ is called a biset; A is the

inner part and A+ is the outer part of A, and ∂A = A+ \A is the boundary of A. The co-set of A is

A∗ = V \A+; the co-biset of A is A
∗ = (A∗, V \A). Let V denote the family of bisets over V .

A biset function assigns to every A ∈ V a real number; in our context, it will always be an integer.

Definition 1.3 An edge covers a biset A if it goes from A to A∗. For a biset A and an edge-set/graph

J let δJ (A) denote the set of edges in J covering A and let dJ (A) = |δJ(A)|. The residual function of a

biset function f w.r.t. a partial f -cover J is defined by fJ (A) = f(A)− dJ (A) for all A ∈ V. We say that

an edge set/graph J covers a biset function f , or that J is an f-cover, if dJ (A) ≥ f(A) for all A ∈ V.

We say that A is an st-biset if s ∈ A and t ∈ A∗. By the node-capacitated version of Menger’s Theorem

we have that if a (directed or undirected) graph G = (V,E) has node capacities {q(v) : v ∈ V } then:

λqG(s, t) = min{q(∂A) + dG(A) : A is an st-biset} .
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Thus λqG(s, t) ≥ rst if and only if dG(A) ≥ rst − q(∂A) for every st-biset A Consequently, we get that G

satisfies r if and only if G covers the biset function defined by fqr (A) = max
st∈δD(A)

rst − q(∂A) for all A ∈ V,

where we treat demand pairs as edges and denote by δD(A) the set of demand pairs that cover A. In the

Q-connectivity case we have q(v) = 1 if v ∈ Q and q(v) = ∞ otherwise, so G satisfies r iff G covers the

biset function fr = fQr defined by

fr(A) =















max
st∈δD(A)

rst − |∂A| if ∂A ⊆ Q

0 otherwise

We thus often will consider the following generic problem:

Biset-Function Edge-Cover

Input: A graph Ĝ = (V, Ê) with edge costs {ce : e ∈ Ê} and a biset function f on V .

Output: A minimum cost edge-set E ⊆ Ê that covers f .

Here f may not be given explicitly, and an efficient implementation of algorithms requires that certain

queries related to f can be answered in time polynomial in n. We will not consider implementation details.

In most applications relevant polynomial time oracles are available via min-cut computations. In particular,

we have a polynomial time separation oracle for the LP-relaxation due to Frank and Jordan [16]:

τ(f) = min c · x

(Biset-LP) s.t. x(δE(A)) ≥ f(A) ∀A ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

Note that any 0, 1-valued biset function f corresponds to the biset family F = {A ∈ V : f(A) = 1}.

We thus use for biset families the same terminology and notation as for biset functions, e.g., τ(F) is the

optimal value of the Biset-LP for covering F , and FJ = {A ∈ F : δJ(A) = ∅} denotes the residual family

of F . In the Biset-Family Edge-Cover problem we seek a minimum cost edge-set E ⊆ Ê that covers F .

1.4.2 The backwards augmentation method

We now describe the backwards augmentation method due to [20] for reducing a Biset-Function Edge-

Cover problem to max(f) = max
A∈V

f(A) instances of the Biset-Family Edge-Cover problem, but with a loss of
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only O(lnmax(f)) in the approximation ratio. Let us say that Biset-Function Edge-Cover admits LP-ratio

ρ if there exists a polynomial time algorithm that computes an f -cover of cost at most ρ · τ(f).

Lemma 1.5 Suppose that for a Biset-Function Edge-Cover instance (f, Ĝ, c) the following holds: for any

E ⊆ Ê, the Biset-Family Edge-Cover instance (F , Ĝ \ E, c) with F = {A ∈ V : fE(A) = max(fE)} admits

LP-ratio ρ. Then such Biset-Function Edge-Cover instance admits LP-ratio ρ ·H(max(f)).

Proof: Let x be an optimal solution for the Biset-LP for f . Consider the following algorithm.

Algorithm 1: Backwards Augmentation(f, Ĝ, c)

1 E ← ∅

2 while max(fE) > 0 do

3 find a cover J ⊆ Ê of the family F = {A ∈ V : fE(A) = max(fE)} of cost c(J) ≤ ρτ(F)

4 E ← E ∪ J , Ê ← Ê \ J

5 return E

After each iteration max(fE) decreases by at least 1, hence the algorithm terminates and computes a

feasible solution. Consider some iteration with max(fE) = ℓ. Note that x
ℓ is a feasible solution to the Biset-

LP for the family F covered at this iteration. This implies τ(F) ≤ τ(f)
ℓ , and hence c(J) ≤ ρτ(F) ≤ ρ τ(f)

ℓ .

Consequently, at the end of the algorithm c(E) ≤ ρτ(f)
∑1

ℓ=k
1
ℓ = ρτ(f)H(k). ✷

Applying the backward augmentation method means that at each iteration we cover all bisets with

maximum residual demand. This is equivalent to increasing the connectivity by 1 between demand pairs

for which rst−λ
Q
G(s, t) is maximum, where G = (V,E) is the partial solution computed so far. Then we get

the following problem, which is a restriction of Survivable Network to instances when Ĝ contains a subgraph

G = (V,E) of cost 0 and the demands are rst = λQG(s, t) + 1 for all st ∈ D.

Survivable Network Augmentation

Input: A graph G, and edge set Ê with costs {ce : e ∈ Ê} and a set D ⊆ V × V of demand pairs.

Output: A minimum cost edge-set J ⊆ Ê such that λQG∪J(s, t) ≥ λ
Q
G(s, t) + 1 for all st ∈ D.
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Figure 1.2: Illustration to Fact 1.2; the sets A, ∂A, A∗ are the “rows” and B, ∂B, B∗ are the “columns” of

a 3 × 3 “matrix”. (a) Types of directed edges that cover A ∩ B. (b) Types of undirected edges that cover

A \ B. (c) Nodes appearing in ∂(A ∩ B) and in ∂(A ∪ B). (d) Nodes appearing in ∂(A \ B) and in ∂(B \A).

Definition 1.4 A ts-biset A is ts-tight in a graph G if |∂A| + dG(A) = κG(t, s); in the case of Q-con-

nectivity we also require ∂A ⊆ Q. Given an instance of Survivable Network Augmentation, we say that A is

tight if it is ts-tight for some ts ∈ D.

By Menger’s Theorem we have:

Fact 1.1 An edge set J ⊆ Ê is a feasible solution to the Survivable Network Augmentation problem if and

only if J covers the family of tight bisets.

1.4.3 Properties of tight bisets

By Fact 1.1, the Survivable Network Augmentation problem is equivalent to the Biset-Family Edge-Cover

problem with F being the family of tight bisets; in this section we will establish some properties of this

family.

Definition 1.5 The intersection and the union of two bisets A,B are defined by A∩B = (A∩B,A+∩B+)

and A ∪ B = (A ∪ B,A+ ∪ B+). The biset A \ B is defined by A \ B = (A \ B+, A+ \ B). We say that B

contains A and write A ⊆ B if A ⊆ B and A+ ⊆ B+.

The following properties of bisets are easy to verify (see Fig. 1.2).

Fact 1.2 For any bisets A,B the following holds. If a directed/undirected edge e covers one of A∩B,A∪B

then e covers one of A,B (see Fig. 1.2); if e is an undirected edge, then if e covers one of A \B,B \A, then

e covers one of A,B. Furthermore |∂A|+ |∂B| = |∂(A ∩ B)|+ |∂(A ∪ B)| = |∂(A \B)|+ |∂(B \ A)| .
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For a biset function f and bisets A,B the supermodular inequality is:

f(A ∩ B) + f(A ∪ B) ≥ f(A) + f(B)

A biset function f is: supermodular if the supermodular inequality holds for all A,B ∈ V, submodular

if −f is supermodular, and modular if f is both submodular and supermodular. f is symmetric if

f(A) = f(A∗) for all A ∈ V. It is easy to see that for symmetric f , if the supermodular inequality holds for

A,B∗ then f(A \ B) + f(B \ A) ≥ f(A) + f(B). From Fact 1.2 one can deduce the following.

• For any (directed or undirected) graph G the function dG(·) is submodular, and if G is an undirected

graph then dG(·) is symmetric.

• The function |∂(·)| is modular.

The following lemma from [41] gives a general “uncrossing property” of tight bisets, namely, a useful

characterization of those pairs A,B ∈ F for which A ∩ B,A ∪ B ∈ F or A \ B,B \ A ∈ F holds.

Lemma 1.6 Let A,B be bisets in a graph G such that A is aa′-tight, B is bb′-tight, and κG(a, a
′) ≥ κG(b, b

′).

(i) If A ∩ B,A ∪ B are both aa′-bisets then they are both aa′-tight. Otherwise, the following holds.

(a) If A ∩ B is an aa′-biset and A ∪ B is a bb′-biset then A ∩ B is aa′-tight and A ∪ B is bb′-tight.

(b) If A ∩ B is a bb′-biset and A ∪ B is an aa′-biset then A ∩ B is bb′-tight and A ∪ B is aa′-tight.

(ii) Suppose that G is an undirected graph. If A \ B is an aa′ biset and B \A is an a′a-biset then A \B is

aa′-tight and B \ A is a′a-tight. Otherwise, the following holds.

(a) If A \ B is an aa′-biset and B \ A is a bb′-biset then A \B is aa′-tight and B \ A is bb′ tight.

(b) If A \ B is a b′b-biset and B \ A is an a′a-biset then A \B is b′b-tight and B \ A is a′a tight.

Proof: Let us use the notation κ(s, t) = κG(s, t) and ψ(A) = |∂A| + dG(A). Note that ψ is submodular,

namely, ψ(A) + ψ(B) ≥ ψ(A ∩ B) + ψ(A ∪ B) for all A,B ∈ V. Also note that for any st-biset C we have

ψ(C) ≥ κ(s, t) and κ(s, t) = ψ(C) iff C is st-tight. If A ∩ B,A ∪ B are both aa′-bisets then:

κ(a, a′) + κ(a, a′) ≥ κ(a, a′) + κ(b, b′) = ψ(A) + ψ(B) ≥ ψ(A ∩ B) + ψ(A ∪ B) ≥ κ(a, a′) + κ(a, a′) .
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Hence equality holds everywhere, so A ∩ B,A ∪ B are both aa′-tight (and κ(a, a′) = κ(b, b′)).

In case (ia) we have κ(a, a′)+κ(b, b′) = ψ(A)+ψ(B) ≥ ψ(A∩B)+ψ(A∪B) ≥ κ(a, a′)+κ(b, b′). Hence

equality holds everywhere, so A ∩ B is aa′-tight and A ∪ B is bb′-tight.

In case (ib) we have κ(a, a′)+κ(b, b′) = ψ(A)+ψ(B) ≥ ψ(A∩B)+ψ(A∪B) ≥ κ(b, b′)+κ(a, a′). Hence

equality holds everywhere, so A ∩ B is aa′-tight and A ∪ B is bb′-tight.

We prove (ii). If G is undirected then ψ is symmetric, and thus ψ(A) + ψ(B) ≥ ψ(A \ B) + ψ(B \ A).

Also note that κ(s, t) = κ(t, s) for all s, t ∈ V . If A \ B is an aa′ biset and B \ A is an a′a-biset then

κ(a, a′) + κ(a′, a) ≥ κ(a, a′) + κ(b, b′) = ψ(A) + ψ(B) ≥ ψ(A \ B) + ψ(B \ A) ≥ κ(a, a′) + κ(a′, a) .

Hence equality holds everywhere, so A \ B is aa′-tight and B \ A is a′a-tight (and κ(a, a′) = κ(b, b′)).

In case (iia) we have κ(a′, a)+κ(b′, b) = ψ(A)+ψ(B) ≥ ψ(A \B)+ψ(B \A) ≥ κ(a′, a)+κ(b′, b). Hence

equality holds everywhere, so A \ B is b′b-tight and B \ A is a′a-tight.

In case (iib) we have κ(a, a′)+κ(b, b′) = ψ(A)+ψ(B) ≥ ψ(A \B)+ψ(B \A) ≥ κ(a′, a)+κ(b′, b). Hence

equality holds everywhere, so A \ B is aa′-tight and B \ A is bb′-tight. ✷

Inclusionwise minimal members of a biset family F are called F-cores, or simply cores, if F is clear

from the context. Let C(F) denote the family of F-cores. From Lemma 1.6 we have the following:

Corollary 1.1 Let A,B be distinct cores of the family of tight bisets, where A is aa′-tight and B is bb′-tight,

and aa′, bb′ ∈ D. If A ∩ B 6= ∅ then {a, a′} ∩ ∂B 6= ∅ or {b, b′} ∩ ∂A 6= ∅, and if a′ = b′ then a ∈ ∂B or

b ∈ ∂A.

1.5 Rooted and subset uniform demands

Let us say that a graph G is k-(T, s)-connected if κG(t, s) ≥ k for all t ∈ T . In the k-(T, s)-Connectivity

Augmentation problem the goal is to augment a k-(T, s)-connected graph G by a minimum cost edge set J

such that G ∪ J is (k + 1)-(T, s)-connected. We survey the following result.

Theorem 1.4 (Nutov [39, 40]) Undirected k-(T, s)-Connectivity Augmentation admits LP-ratio O(k).
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Theorem 1.4 can be applied to compute a solution to Rooted Survivable Network in k iterations, where

at iteration ℓ = 1, . . . , k we increase the connectivity between nodes in T and s from ℓ− 1 to ℓ. For general

rooted demands we get ratio
∑k

ℓ=1O(ℓ) = O(k2). For demands rst = k for all t ∈ T , this is equivalent to

the backward augmentation method, so we get ratio O(k ln k) in this case. Summarizing, we have:

Corollary 1.2 Undirected Rooted Survivable Network with demands rst = k for all t ∈ T admits LP-ratio

O(k ln k). For rooted general demands the problem admits LP-ratio O(k2).

We now prove Theorem 1.4. The idea of the proof is similar to the one of Theorem 1.2 – to decompose

the problem into O(k) element-connectivity Survivable Network problems. We will prove a more general

result stated in biset families terms. The family of tight bisets in our problem is

F = {A ∈ V : A is a ts-biset for some t ∈ T, |∂A|+ dG(A) = k}

Definition 1.6 A biset family F is uncrossable if A∩B,A∩B ∈ F or A \B,B \A ∈ F for any A,B ∈ V.

Let us say that bisets A,B: T -intersect if A ∩ B ∩ T 6= ∅, and T -co-cross if A ∩ B∗ ∩ T 6= ∅ and

B ∩ A∗ ∩ T 6= ∅. A biset family F is T -uncrossable if A ∩ T 6= ∅ for all A ∈ F and if for any A,B ∈ F

the following holds: A ∩ B,A ∪ B ∈ F if A,B T -intersect, and A \ B,B \ A ∈ F if A,B T -co-cross.

Lemma 1.7 If G is a k-(T, s)-connected undirected graph then the family F of tight bisets is T -uncrossable.

Proof: Let A,B ∈ F . If A,B T -intersect then A∩B,A∪B ∈ F by Lemma 1.6(i). If A,B T -co-cross then

A \ B,B \ A ∈ F by Lemma 1.6(iia). ✷

Recall that by Fact 1.1 any Survivable Network Augmentation problem is equivalent to the corresponding

Biset-Family Edge-Cover problem with F being the family of tight bisets. By Lemma 1.7, in the k-(T, s)-

Connectivity Augmentation problem the family of tight bisets of the input graphG is T -uncrossable. Also note

that |∂A| ≤ k for every tigh biset A (see Definition 1.4). Thus the following theorem implies Theorem 1.4.

Theorem 1.5 (Nutov [39, 40]) Undirected Biset-Family Edge-Cover with T -uncrossable biset family F

admits LP-ratio 4
3

(

ℓ+ 4γ2

γ+1

)

+ 2 = O(γ + 1), where γ = max
A,B∈F

|∂A ∩ B ∩ T | and ℓ is the least integer such

that 2ℓ ≥ γ + 1.
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In the rest of this section we prove Theorem 1.5. For an F-core C ∈ C(F), the halo-family F(C) of C

is the family of those members of F that contain C and contain no F-core distinct from C.

Lemma 1.8 Let F be a T -uncrossable biset family and let p = min
A∈F
|A∩T |. Then there exists a polynomial

time algorithm that computes a partition Π of C(F) with at most 2⌊γ/p⌋+1 parts such that for each C ∈ Π

the family
⋃

C∈C

F(C) is uncrossable. Furthermore, if p ≥ γ + 1 then F is uncrossable.

Proof: It is easy to see that if p ≥ γ + 1 then any A,B ∈ F must T -intersect or T -co-cross; thus F is

uncrossable in this case. We prove the first statement. For Ci ∈ C(F) let Bi =
⋃

A∈F(Ci)

A be the union of

the bisets in the halo family of Ci, namely, Bi is the inclusionwise maximal biset in F(Ci). Note that since

F is T -uncrossable, then for any Ai ∈ F(Ci) and Aj ∈ F(Cj) we have:

(i) Ai,Aj T -intersect if and only if i = j.

(ii) If Ci ∩B
∗
j ∩ T and Cj ∩B

∗
i ∩ T are both nonempty then Ai,Aj T -co-cross.

Construct an auxiliary directed graph J as follows. The node set of J is C(F). Add an arc CiCj if

Ci ∩ T ⊆ ∂Bj . The indegree of every node in J is at most ⌊γ/p⌋, by (i). This implies that every subgraph

of the underlying graph of J has a node of degree 2⌊γ/p⌋. A graph is d-degenerate if every subgraph of

it has a node of degree ≤ d. It is known that any d-degenerate graph can be colored with d + 1 colors, in

polynomial time. Hence J is (2⌊γ/p⌋ + 1)-colorable, and such a coloring can be computed in polynomial

time. Consequently, we can compute in polynomial time a partition Π of C(F) into at most 2⌊γ/p⌋ + 1

independent sets. For each independent set C ∈ Π, the family
⋃

C∈C

F(C) is uncrossable, by (ii). Hence Π is

a partition as required, and the proof of the lemma is complete. ✷

The best known ratio for covering an uncrossable biset family is 2. However, ratio 4/3 is known for the

case when the uncrossable family is a union of its halo families [19].

Consider the following algorithm.
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Algorithm 2: T -Uncrossable Edge-Cover(Ĝ, c,F)

1 J ← ∅

2 while p := min
A∈C(FJ )

|A ∩ T | ≤ γ/2 do

3 find a partition Π of C(FJ) as in Lemma 1.8 with at most 2⌊γ/p⌋+ 1 parts

4 for every C ∈ Π find a 4/3-approximate edge-cover JC of the family
⋃

C∈C

FJ(C)

5 for every C ∈ Π do: J ← J ∪ JC

6 find a 2-approximate edge-cover of J ′ of FJ and add J ′ to J

7 return J

Let pi denote the value of p at the beginning of iteration i in the while loop. Initially, p1 ≥ 1. Note that

for any T -uncrossable family F , if an F-core C and A ∈ F T -intersect then C ⊆ A; this implies that if I is

an edge set that covers all halo families of F then every FI -core A contains at least two F-cores. From this

it follows that pi ≥ 2pi−1 for all i. Thus the number of iterations in the while loop is at most ℓ− 1, where

ℓ is the least integer such that 2ℓ ≥ γ + 1. Consequently, the number of simple uncrossable biset families

covered in the while loop is bounded by

ℓ−1
∑

i=0

(2⌊γ/2i⌋+ 1) ≤ ℓ+ 2γ

ℓ−1
∑

i=0

(1/2)
i
= ℓ+ 4γ(1− 1/2ℓ) ≤ ℓ+

4γ2

γ + 1
.

Thus the approximation ratio is bounded by 4
3

(

ℓ+ 4γ2

γ+1

)

+ 2, as claimed in Theorem 1.5.

Let us now consider the Subset k-Connected Subgraph problem. Let us say that G is k-T -connected

if κG(s, t) ≥ k for all s, t ∈ T . In the k-T -Connectivity Augmentation problem the goal is to augment a

k-T -connected graph G by a minimum cost edge set J such that G ∪ J is (k + 1)-T -connected. The ratios

for this problem can derived from those of the k-(T, s)-Connectivity Augmentation problem via the following

relation (the proof is omitted).

Theorem 1.6 (Nutov [42]) For |T | > k, if k-(T, s)-Connectivity Augmentation admits ratio (LP-ratio) ρ

then k-T -Connectivity Augmentation admits the following ratios (LP-ratios):

(i) b(ρ+ k) +O(µ2 lnµ), where b = 1 for undirected graphs and b = 2 for directed graphs, and µ = T
|T |−k .

(ii) ρ ·O(µ ln k) for both directed and undirected graphs; furthermore, this is so also for {0, 1}-costs.
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For |T | > k, the best known values of ρ on undirected graphs are O(k) for arbitrary costs and O(ln k) for

{0, 1}-costs. For directed graphs ρ = |T | for arbitrary costs and ρ = O(log |T |) for {0, 1}-costs. These are

LP-ratios, so the backward augmentation method can be applied. Thus Theorem 1.6 implies the following.

Corollary 1.3 For |T | > k, k-T -Connectivity Augmentation admits the following LP-ratios.

• For undirected graphs: O(k + µ2 lnµ) for arbitrary costs, and O(µ ln2 k) for {0, 1}-costs, µ = T
|T |−k .

• For directed graphs: 2(|T |+ k) +O(µ2 lnµ) for arbitrary costs, and O(µ ln k ln |T |) for {0, 1}-costs.

For Subset k-Connected Subgraph, the ratios are larger by a factor of O(log k).

1.6 {0, 1}-Costs Survivable Network problems

Here we consider the {0, 1}-Costs Survivable Network problem, that can be formulated as follows.

{0, 1}-Costs Survivable Network

Input: A directed/undirected graph G = (V,E), Q ⊆ V , and connectivity demands {rst : st ∈ D}.

Output: A minimum size set J of new edges (any edge is allowed) such that G ∪ J satisfies r.

Theorem 1.7 (Kortsarz & Nutov [31], Nutov [41]) Suppose that for an instance of {0, 1}-Costs Sur-

vivable Network we are given a node subset Z ⊆ V such that Z \ ∂A 6= ∅ for every biset A ∈ V with

fr(A) > 0. Then the problem admits ratio O(|Z| ln |D|). For undirected graphs the problem also admits

ratio O(|Z| ln2 k).

Note that the following choices of Z satisfy the assumption of Theorem 1.7: (i) Z = {z} for some

z ∈ V \Q; (ii) Z = {s} in the case of rooted demands; (iii) any Z ⊆ V with |Z| = k. Thus we have:

Corollary 1.4 {0, 1}-Costs Survivable Network admits ratios O(ln |D|) if Q 6= V and O(k ln |D|) if Q = V .

For undirected graphs the problem also admits ratios O(ln2 k) if Q 6= V or if the demands are rooted, and

ratio O(k ln2 k) otherwise.



1.6 {0, 1}-COSTS SURVIVABLE NETWORK PROBLEMS R-1-21

For Q 6= V the ratio O(ln |D|) is tight since the problem is Set-Cover hard [37]; for directed graphs this

is so even for rooted 0, 1 requirements [13]. For Q = V , the ratio O(k ln |D|) is tight if k is small, but may

seem weak if k is large. However, a much better ratio might not exist, see Theorem 1.10.

The proof of Theorem 1.7 follows. An undirected edge set (or a graph) S is a star if all its edges are

incident to the same node, called the center of the star. In the case of directed graphs, S should be either

an outstar – all edges in S leave the center, or an instar – all edges in S enter the center. Let Star

Survivable Network be the restriction of Survivable Network to instances when the set of positive cost edges

in Ê is a star S with center z ∈ V \Q. Note that here the edges incident to z may have arbitrary costs.

Lemma 1.9 If Star Survivable Network admits ratio ρ then any {0, 1}-Costs Survivable Network instance I

with Z as in Theorem 1.7 admits ratio 2|Z|ρ.

Proof: For every z ∈ Z obtain from I an instance Iz, in which z is excluded from Q, and except the edges

in E, only edges incident to z are allowed, by cost 1 each. In the undirected case, Iz is a Star Survivable

Network instance; for each z ∈ Z we compute a ρ-approximate solution Iz for Iz and return I =
⋃

z∈Z

Iz. In

the directed case we further split the instance Iz into two Star Survivable Network instances Ioutz and Iinz .

• Ioutz is obtained from Iz by adding to E zero cost edges from every v ∈ V \ {z} to z, and allowing

only additional edges leaving z, by cost 1 each.

• Iinz is obtained from Iz by adding to E zero cost edges from z to every v ∈ V \ {z}, and allowing only

additional edges entering z, by cost 1 each.

Each of Ioutz , Iinz is a Star Survivable Network instance; for each z ∈ Z we compute a ρ-approximate solution

Ioutz and Iinz for Ioutz and Iinz , respectively, set Iz = Ioutz ∪ Iinz , and return I =
⋃

z∈Z

Iz.

We show that I is a feasible solution to I. We prove this for the directed case, and the proof for the

undirected case is similar. Suppose to the contrary that there is st ∈ D such that λQG∪I(s, t) < rst. Then

there is an st-biset A such that |∂A|+dG∪I(A) < rst. By the assumption on Z, there exists z ∈ Z such that

z ∈ A or z ∈ A∗. Since Ioutz , Iinz ⊆ I, |∂A|+ dG∪Iout(A) < rst and |∂A|+ dG∪Iin(A) < rst. If z ∈ A then the

former inequality contradicts the feasibility of Ioutz for Ioutz , since adding to G links entering z does affect

the inequality. The contradiction for the case z ∈ A∗ is obtained in a similar way.
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Now let J be an optimal solution to I. We will show that Iz ≤ 2ρ|J | for every z ∈ Z, and thus

I ≤ 2|Z|ρ. Obtain from J a solution Jz for the instance Iz by subdividing every edge in J by a new node,

and then identifying all new nodes into z. It is easy to see that Jz is a feasible solution for Iz, and clearly

|Jz| = 2|J |. Thus in the undirected case our ρ-approximate solution Iz satisfies |Iz| ≤ 2ρ|Jz| = 2ρ|J |. In

the directed case we further split Jz into sets Jout
z and J in

z of edges leaving and entering z, respectively.

Then |Ioutz | ≤ ρ|Jout
z | and |I

in
z | ≤ ρ|J in

z |, implying |Iz| = |I
out
z | + |I

in
z | ≤ ρ(|Jout

z | + |J
in
z |) = ρ|Jz| = 2ρ|J |.

This concludes the proof of the lemma. ✷

We prove the following theorem that together with Lemma 1.9 implies Theorem 1.7.

Theorem 1.8 ([31, 41, 32]) Directed Star Survivable Network admits ratio H(|D|), where H(j) =
∑j

i=1 1/i

is the jth harmonic number. For undirected graphs the problem admits ratio H(k) ·H(8k2−14k+7), k ≥ 2.

1.6.1 Ratio H(|D|) for directed Star Survivable Network

Here we prove the directed part of Theorem 1.8. Since it concerns directed graphs only, we may consider

only the edge connectivity case by applying Lemma 1.1, since the reduction in the proof of Lemma 1.1

preserves our problem type and does not change the parameter |D|. We will also assume that F is an

outstar.

We use a result due to Wolsey [46] about the performance of a greedy algorithm for the Submodular

Cover problem. Here we are given two set functions on subsets of a groundset S: a cost-function c and and

an integer valued “progress function” p. Each of the functions may be given by a value oracle, meaning

that there exists an oracle that given a subset of S return the corresponding function value. The goal is

to find J ⊆ S of minimum cost such that p(J) = p(S). In the Submodular Cover problem the function p

is submodular and non-decreasing, and the cost of J ⊆ S is c(J) =
∑

e∈J ce for some non-negative costs

{ce : e ∈ S}. Wolsey [46] proved that the greedy algorithm, that starts with J = ∅ and as long as p(J) < p(S)

repeatedly adds to J an element e ∈ S \ J with maximum p(J∪{e})−p(J)
ce

, has ratio H

(

max
e∈S

p({e})− p(∅)

)

.

In our case S is an outstar, and for J ⊆ S let

p(J) =
∑

st∈D

min{pst(J), rst} where pst(J) = λG∪J(s, t)
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It is not hard to verify that p is non-decreasing, and that J is a feasible solution to a Survivable Network

instance if and only if p(J) = r(D). It is also easy to see that λG∪{e}(s, t) − λG(s, t) ≤ 1 for any graph G

and any edge e, as adding a single edge can increase the st-connectivity by at most 1. Thus for any edge e

we have pst({e})− pst(∅) ≤ 1, which implies p({e})− p(∅) ≤ |D|.

Note that if each function pst(J) = λG∪J(s, t) is submodular then so is p. Indeed, it is known (c.f.

[44]) that if f is submodular and non-decreasing, then min{f, ℓ} is submodular for any constant ℓ; thus

min{pst(J), rst} is submodular. As a sum of submodular functions is also submodular, we obtain that p is

submodular.

Fix s, t ∈ V and for J ⊆ S let f(J) = λG∪J(s, t). We show that if S is a star then f is submodular (this

may not be so if S is not a star). We use the following known characterization of submodularity, c.f. [44]:

A set-function f on a groundset S is submodular iff

f(J0 ∪ {e}) + f(J0 ∪ {e
′}) ≥ f(J0) + f(J0 ∪ {e, e

′}) ∀J0 ⊆ S, e, e
′ ∈ F \ J0

Let J0 ⊆ S. Revising our notation to G← G ∪ J0, S ← S \ J0, and f(J)← f(J0 ∪ J)− f(J0), we get that

the above condition is equivalent to

f({e}) + f({e′}) ≥ f({e, e′}) ∀e, e′ ∈ S .

As before, S is an outstar and f(J) = λG∪J(s, t)− λG(s, t) is the increase in the (s, t)-edge-connectivity

as a result of adding J to G. We prove the following general statement, that implies the above; it says that

if an augmenting edge set J is an outstar that increases the st-edge-connectivity by h, then there are h

edges in J that cover all st-tight sets, and thus each of these edges increases the st-edge-connectivity by 1.

Lemma 1.10 Let G = (V,E) be a directed graph and J an outstar with center z on V . Let s, t ∈ V , and

let h = λG∪J(s, t) − λG(s, t). Then there is I ⊆ J of size h such that λG∪{e}(s, t) = λG(s, t) + 1 for every

e ∈ I.

Proof: Let F be the family of st-tight sets. Then F is non-empty, and by Lemma 1.6(i) A∩B,A∪B ∈ F

for any A,B ∈ F . As the intersection of all sets in F contains s and thus nonempty, F has a unique

inclusion-minimal set Amin and a unique inclusion-maximal set Amax, and Amin ⊆ Amax.
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Let I = {zv ∈ J : a ∈ Amin, v ∈ V \Amax} be the set of edges in J that go from Amin to V \Amax. Each

edge in I covers F , hence by Menger’s Theorem λG∪{e}(s, t) = λG(s, t) + 1 for every e ∈ I.

It remains to prove that |I| ≥ h. We claim that since J is an outstar, then λG∪J(s, t) ≤ λG(s, t) + |I|,

hence |I| ≥ λG∪J(s, t)− λG(s, t) = h. Note that from Menger’s Theorem we have

λG∪J(s, t) ≤ λG(s, t) + |δJ(Amin)| λG∪J(s, t) ≤ λG(s, t) + |δJ (Amax)|

The first inequality implies that if δJ(Amin) = ∅, then λG∪J(s, t) = λG(s, t), and then we are done. Else,

we must have z ∈ Amin. In this case I = δJ(Amax), since J is a star. Then the second inequality implies

λG∪J(s, t) ≤ λG(s, t) + |I|, as claimed. ✷

1.6.2 Ratio O(ln2 k) for undirected Star Survivable Network

Here we prove the undirected part of Theorem 1.8. For simplicity of exposition, we consider the case

Q = V \ {z} where z is the center of the star of the available edges.

As an intermediate problem, we consider the augmentation version of the problem, namely:

Star Survivable Network Augmentation

Input: A graph G = (V,E), a star S with center z and costs {ce : e ∈ S}, and a set D of demand pairs.

Output: A minimum cost edge set J ⊆ S such that λQG∪J(s, t) ≥ λ
Q
G(s, t)+1 for all st ∈ D, Q = V \{z}.

Here the family of tight bisets is

{A ∈ V : |∂A|+ dG(A) = λQG(s, t) for some st ∈ δD(A), z /∈ ∂A}

Note that this family is symmetric, since if A is tight then so is A
∗. Let us say that U is a transversal

(hitting set) of a biset family C or that U is a C-transversal if U ∩ C 6= ∅ for all C ∈ C. A fractional C-

transversal is a function h : V −→ [0, 1] such that h(C) ≥ 1 for all C ∈ C. Given node-weights {wv : v ∈ V }

let τw(C) denote the optimal value of a fractional C-transversal, namely

τw(C) = min{
∑

v∈V

wvxv : x(C) ≥ 1 ∀C ∈ C, xv ≥ 0 ∀v ∈ V } .

Let ∆(C) denote the maximum degree in the (multi)hypergraph {C : C ∈ C} formed by the inner parts

of the members of C. The problem of finding a minimum weight C-transversal is the Hitting Set problem,
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and it is a particular case of the Submodular Cover problem. In this case the greedy algorithm computes a

solution of weight at most H(∆(C))τw(C). It is easy to see that if J covers a biset family F then the set of

endnodes of J is a C(F)-transversal. The following lemma shows that in our case the inverse is also true.

Lemma 1.11 Let U be a transversal of a symmetric biset family F and let J be a star on U with center z

such that z /∈ ∂A for every A ∈ F . Then J covers F .

Proof: Let A ∈ F . Since z /∈ ∂A, z ∈ A or z ∈ V \ A+. If z ∈ V \ A+, then since U is an F-transversal

and since F is symmetric, there is u ∈ U ∩ A. If z ∈ A, then there u ∈ U ∩ A∗, by a similar argument. In

both cases, the edge zu belongs to the star J and covers A. ✷

Lemma 1.11 implies that Star Survivable Network Augmentation is equivalent to finding a minimum

weight C-transversal, where C is the family of cores of tight bisets and the weights are wv = czv if v 6= z and

wz = 0. Thus the problem admits LP-ratio H(∆(C)). Hence if ∆k is a bound on ∆(C) for all instances with

maximum demand k, then we can apply the backward augmentation method as described in Lemma 1.5 and

achieve an LP-ratio H(k) ·H(∆k). Consequently, the following theorem finishes the proof of Theorem 1.8.

Theorem 1.9 ([41]) Let C be the family of cores of the family of tight bisets and let γ = max
A∈C
|∂A ∩ T |.

Then ∆(C) ≤ 8γ2 + 2γ + 1; thus ∆(C) ≤ 8(k − 1)
2
+ 2(k − 1) + 1 = 8k2 − 14k + 7.

Proof: Fix some v ∈ V and let C′ = {C ∈ C : v ∈ C}. For every Ci ∈ C
′ choose one pair siti ∈ D such that

Ci is siti-tight. Let (T
′, D′) be the directed graph induced by the chosen pairs. Also construct an auxiliary

directed graph (C′,J ′) with edge labels where for every u ∈ {si, ti} ∩ ∂Cj there is an edge CiCj ∈ J
′

with label u. Note that for any i 6= j we have v ∈ Ci ∩ Cj , hence by Corollary 1.1 {si, ti} ∩ ∂Cj 6= ∅ or

{sj , tj} ∩ ∂Ci 6= ∅. Thus the (simple) underlying graph of (C′,J ) is a clique.

Claim 1.2 For any u ∈ T ′, the number of edges in D′ incident to u is at most 2γ + 1. Consequently, for

any st ∈ D′ there are at most 4γ + 1 edges in D′ that are incident to s or to t.

Proof: Let D′
u be the set of edges in D′ incident to u and C′u the corresponding set of cores. Let d = |D′

u|.

For every siti ∈ D
′
u let vi = {si, ti} \ {u}, namely vi = ti if u = si and vi = si if u = ti. Consider a pair

siti, sjtj ∈ D
′
u. Since v ∈ Ci ∩Cj , then by Lemma 1.6 and the minimality of Ci,Cj we must have vi ∈ ∂Cj
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or vj ∈ ∂Ci. Now consider the subgraph (C′u,J
′
u) of (C

′,J ′) induced by C′u. The underlying graph of this

subgraph is a clique, hence |J ′
u| ≥

d(d−1)
2 . Consequently, (C′u,J

′
u) has a node C of indegree at least d−1

2 .

Note that each edge in J ′
u that enters C contributes the node of its label to ∂C ∩ T ′, and no two edges

entering C have the same label. Hence d−1
2 ≤ |∂C ∩ T

′| ≤ γ, implying d ≤ 2γ + 1. ✷

We now finish the proof of Theorem 1.9. Let ∆ = |C′|. The graph (C′,J ′) has a node C of indegree

≥ (∆ − 1)/2, since its underlying graph is a clique. Now consider the labels of the arcs entering C. By

Claim 1.2, there are at least (∆−1)/(8γ+2) edges that enter C, such that no two edges have the same label.

Each one of these edges contributes a node to ∂C ∩ T . Consequently, we must have (∆− 1)/(8γ + 2) ≤ γ,

which implies ∆ ≤ 8γ2 + 2γ + 1. ✷

1.6.3 Hardness of approximation of the {0, 1}-costs case

We will show that Survivable Network with {0, 1}-costs is almost as hard to approximate as the following

variant of the Label-Cover problem:

Min-Rep

Instance: A bipartite graph H = (A ∪B, I) and partitions A of A and B of B into parts of equal size.

Objective: Find a minimum size node set A′ ∪ B′, where A′ ⊆ A and B′ ⊆ B, such that for any

Ai ∈ A, Bj ∈ B with δI(Ai, Bj) 6= ∅ there are a ∈ A′ ∩Ai, b ∈ B
′ ∩Bj such that ab ∈ I.

By the Parallel Repetition Theorem [43] (see [28] for details) Min-Rep cannot be approximated within

O(2log
1−ε n) unless NP has quasi-polynomial time algorithms. TheMin-Rep problem was defined by Kortsarz

[28], and was used later by Dodis and Khanna [10] to show a 2log
1−ε n-approximation hardness of the Directed

Steiner Forest problem. This was extended to high connectivity undirected Survivable Network problems by

Kortsarz, Krauthgamer, and Lee [29], and further generalized and simplified in [35]. Here we will describe

a slightly more complicated variant, that proves the same hardness already for the {0, 1}-costs case.

Theorem 1.10 (Kortsarz, Krauthgamer, & Lee [29], Nutov [38])

Directed Survivable Network with {0, 1}-costs cannot be approximated within 2ln
1−ǫ n for any fixed ǫ > 0,

unless NP has quasi-polynomial time algorithms.
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Proof: Given an instance of Min-Rep construct an instance G = (V,E), r of Survivable Network with {0, 1}-

costs as follows, where edges in E have cost 0. Let E = {ij : Ai ∈ A, Bj ∈ B, δH(Ai, Bj) 6= ∅}. Direct the

edges of H from A to B. Then the graph G = (V,E) is obtained from H as follows.

1. Add to H: a set {a1, . . . , a|A|, b1, . . . , b|B|} of |A| + |B| nodes, and for every ij ∈ E a pair of nodes

aij , bij (so a total number of nodes added to H is |A|+ |B|+ 2|E|). Thus

V = A ∪B ∪ {a1, . . . , a|A|, b1, . . . , b|B|} ∪ {aij : ij ∈ E} ∪ {bij : ij ∈ E} .

2. For every ij ∈ E : connect aij to every node that is not in Āij = Ai ∪Bj ∪{bj , bij}, and connect every

node that is not in B̄ij = Ai ∪Bj ∪ {ai, aij} to bij . Thus

E = I ∪ {aijv : ij ∈ E , v ∈ V \ Āij} ∪ {ubij : ij ∈ E , u ∈ V \ B̄ij}.

For ij ∈ E let Cij = {v ∈ V : aijv, vbij ∈ E}. By the construction

Cij = V \ (Āij ∪ B̄ij) = V \ (Ai ∪Bj ∪ {ai, bj , aij , bij})

Since the sets Ai have the same size and the sets Bj have the same size, the sets Cij are also all of the

same size, say k − 1. Every node in Cij is an internal node of an aijbij-path of length 2. Let Gij = G \Cij

be the subgraph of G induced by Ai ∪ Bj ∪ {ai, bj , aij , bij}. By the construction, Gij has no aijbij-path.

Thus κG(aij , bij) = k − 1 for every ij ∈ E . We will ask to increase the connectivity by 1 between pairs

{aijbij : ij ∈ E}, so the demands are:

r(aij , bij) = k for every ij ∈ E .

For ij ∈ E let Fij be the set of edges in F with both endnodes in Gij . Note that for every ij ∈ E :

(i) Gij has no aijbij-path.

(ii) κG∪F (aij , bij) ≥ k iff Gij ∪ Fij has an aijbij-path.

Let us say that a new edge is proper if it goes from ai to Ai for some i, or if it goes from Bj to bj for

some j. Let F be a feasible solution to the constructed Survivable Network instance and let e ∈ F . Assume

that e belongs to Fij for some ij ∈ E , as otherwise e can be removed. We claim if e is non-proper, then e

can be replaced by at most two proper edges e′, e′′ while keeping F feasible, as follows:
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• If e goes from Ai ∪ {ai, aij} to Bj ∪ {bj , bij} then {e
′, e′′} = {aia, bbj} for some ab ∈ δI(Ai, Bj).

• If e = aija for some a ∈ Ai or e = bbij for some b ∈ Bj then e′ = e′′ = aia or e′ = e′′ = bbj ,

respectively.

• If e = a′a′′ for some a′, a′′ ∈ Ai or e = b′b′′ for some b′, b′′ ∈ Bj , then {e
′, e′′} = {aia

′, aia
′′} or

{e′, e′′} = {b′bj , b
′′bj}, respectively.

In each one of the cases, it is not hard to verify that (F \ {e}) ∪ {e′, e′′} is a feasible solution as well. This

implies that there exists a proper feasible solution F ′ with |F ′| ≤ 2|F |.

Note that for every v ∈ A∪B corresponds a unique proper edge, namely, aiv if v ∈ Ai and vbj if v ∈ Bj .

Thus there is a bijective correspondence between proper edge sets F ′ and node subsets A′ ∪ B′ of A ∪ B,

where A′ ⊆ A and B′ ⊆ B. Let F ′ be a proper edge set and let ij ∈ E . Then there are edges aia, bbj ∈ F
′
ij

such that ab ∈ I iff Gij ∪ F
′
ij has an aijbij-path (the path (aij , ai, a, b, bj , bij) of the lenght 5). Thus F ′ is a

feasible solution for the Survivable Network instance if and only if the set A′ ∪ B′ of end-nodes in A ∪ B of

the edges in F ′ is a feasible solution to the Min-Rep instance. Since in the construction |V | = O(n2), where

n = |A|+ |B|, the theorem follows. ✷

1.7 Open problems

In this section we list some open problems in the field.

Undirected Survivable Network with general demands and costs. Best known ratio: O(k3 ln |T |).

Does the problem admit ratio that depends on k only, as in the case of rooted demands?

Rooted Survivable Network with rooted subset uniform demands. Best known ratio: O(k ln k) for

undirected graphs, and |D| for directed graphs. Does the directed variant admits ratio n1−ǫ for some ǫ > 0?

A related (harder) problem is whether the undirected variant admits ratio k1−ǫ.

Undirected Rooted Survivable Network with {0, 1}-costs. Best known ratio: O(min{ln2 k, lnn}). The

problem also has an Ω(ln k) approximation threshold when k = Θ(n). Does the problem admits ratio
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O(ln k)? This is open even for Star Survivable Network with rooted demands.

Undirected Survivable Network with metric costs. Best known ratio: O(ln k) for general demands, and

24 for subset uniform and rooted subset uniform demands. Is the general demands case indeed Ω(ln k) hard

to approximate, or can we get a constant ratio? Can we substantially improve the constant ratio 24 for

subset uniform and rooted subset uniform demands?
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[27] Z. Király, B. Cosh, and B. Jackson. Local edge-connectivity augmentation in hypergraphs is NP-complete.

Discrete Applied Mathematics, 158(6):723–727, 2010.

[28] G. Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–450, 2001.

[29] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertex-connectivity network design

problems. SIAM J. on Computing, 33(3):704–720, 2004.

[30] G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity problems. In T. Gonzalez, editor,

Approximation Algorithms and Metaheuristics, chapter 58. Chapman & Hall, 2007.

[31] G. Kortsarz and Z. Nutov. Tight approximation for connectivity augmentation problems. J. Comput. Syst.

Sci., 74(5):662–670, 2008.

[32] G. Kortsarz and Z. Nutov. Approximating source location and star survivable network problems. Manuscript,

to appear in Theoretical Computer Science, 2014.

[33] G. Kortsarz and D. Peleg. Approximating the weight of shallow Steiner trees. Discrete Applied Math., 93(2-

3):265–285, 1999.

[34] B. Laekhanukit. Parameters of two-prover-one-round game and the hardness of connectivity problems. In

SODA, pages 1626–1643, 2014.

[35] Y. Lando and Z. Nutov. Inapproximability of survivable networks. Theoretical Computer Science, 410(21-

23):2122–2125, 2009.

[36] Z. Nutov. The k-connected subgraph problem. In T. Gonzalez, editor, Approximation Algorithms and Meta-

heuristics, chapter ?? Chapman & Hall, 20??

[37] Z. Nutov. Approximating rooted connectivity augmentation problems. Algorithmica, 44(3):213–231, 2006.

[38] Z. Nutov. Approximating connectivity augmentation problems. ACM Transactions on Algorithms, 6(1), 2009.

[39] Z. Nutov. A note on rooted survivable networks. Inf. Process. Lett., 109(19):1114–1119, 2009.

[40] Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies. ACM Transactions

on Algorithms, 9(1):1, 2012.

[41] Z. Nutov. Approximating node-connectivity augmentation problems. Algorithmica, 63(1-2):398–410, 2012.

[42] Z. Nutov. Approximating subset k-connectivity problems. J. Discrete Algorithms, 17:51–59, 2012.

[43] R. Raz. A parallel repitition theorem. SIAM J. on Comput., 27(3):763–803, 1998.



REFERENCES R-1-32

[44] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-Verlag,

[45] A. Vetta. Approximating the minimum strongly connected subgraph via a matching lower bound. In SODA,

pages 417–426, 2001.

[46] L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica,

2:385–393, 1982.

[47] A. Zelikovsky. A series of approximation algorithms for the acyclic directed steiner tree problem. Algorithmica,

18(1):99–110, 1997.



Index

Backwards augmentation, R-1-13, R-1-17, R-1-20, R-1-25

Biset, R-1-11

tight, R-1-14–R-1-17, R-1-25, R-1-26

Biset family

T -uncrossable, R-1-17–R-1-19

halo-family, R-1-18, R-1-19

transversal of a biset family, R-1-25

uncrossable, R-1-18, R-1-19

Biset function, R-1-11

modular, R-1-15

submodular, R-1-15

supermodular, R-1-15

symmetric, R-1-15, R-1-16

Biset-LP, R-1-12, R-1-13

Connectivity

Q-connectivity, R-1-1, R-1-12

q-connectivity, R-1-1, R-1-6, R-1-12

edge-connectivity, R-1-1, R-1-2, R-1-4–R-1-6

element-connectivity, R-1-2, R-1-9, R-1-17

node-connectivity, R-1-1, R-1-2, R-1-4–R-1-7

Connectivity problem

k-(T, s)-Connectivity Augmentation, R-1-16, R-1-19

k-T -Connectivity Augmentation, R-1-19, R-1-20

k-Connected Subgraph, R-1-1, R-1-3

k-Inconnected Subgraph, R-1-1, R-1-3

Biset-Family Edge-Cover, R-1-12, R-1-13, R-1-18

Biset-Function Edge-Cover, R-1-12, R-1-13

Min-Cost k-Flow, R-1-1, R-1-3

Rooted Survivable Network, R-1-1, R-1-3, R-1-17,

R-1-28

Star Survivable Network, R-1-21, R-1-22, R-1-24, R-

1-25

Subset k-Connected Subgraph, R-1-3, R-1-19, R-1-

20

Survivable Network, R-1-1, R-1-2, R-1-13, R-1-29

Survivable Network Augmentation, R-1-13

Core, R-1-16, R-1-25

Costs

{0, 1}, R-1-2, R-1-5, R-1-7, R-1-20, R-1-26, R-1-29

{1,∞}, R-1-2, R-1-6

metric, R-1-2, R-1-29

Demands, R-1-1

rooted, R-1-3, R-1-20

subset uniform, R-1-3

uniform, R-1-3

Graph

k-(T, s)-connected, R-1-16, R-1-17

k-T -connected, R-1-19

LP-ratio, R-1-13, R-1-16–R-1-20, R-1-25

Menger’s Theorem, R-1-11, R-1-12, R-1-14, R-1-24

Min-Rep problem, R-1-26

Resilient family, R-1-9

Setpair, R-1-7, R-1-9

Submodular Cover problem, R-1-22, R-1-25

R-1-33



INDEX R-1-34

Supermodular inequality, R-1-15


