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Abstract—In this work, we address the capacity region of  As the edge removal problem is open, our connection does
multi-source multi-terminal network communication problems, not progress in answering Question 1, but rather puts it in
and study the change in capacity when one moves formmdepen- 5 proader perspective. For example, as a corollary of our

dent to dependent source information. Specifically, we ask whether ival h that - d f ishi
the trade off between capacity and source independence is of€quivalence, we show that removing an edge of vanishing

continuous nature. We tie the question at hand to that ofedge ~capacity (in the block length) from a network will have a

removal which has seen recent interest. vanishing effect on the capacity of the network if and only if
the trade off in Question 1 is continuous (as before, rigerou
. INTRODUCTION definitions will be given in Section IlI). Using recent result

%‘Bours from [14], this implies a similar equivalence betwee
. estion 1 and the advantage in network coding capacity when
n thg last decade (gee e.g., [1], 2, [3], [4], [.5] and refm_es_, one allows are > 0 error in communication as opposed to
therein). In the multiple source network coding problenisit 5 o

. . . . ero error communication.
common to assume that the information available at differen
source nodes independentUnder this assumption, several Il. M ODEL
aspects of network coding have been explored, including the ) . ]
study of the capacity region of the multi-source multi-terah A k-Source coding probleniZ, n, X) is defined by (a) a
network coding problem, e.g. [6], [7], [8], [9], [10], [11].  Network instance, (b) a block lengthn, and (c) a vector of

In this work we focus our study on the “independence®@ndom variablesy.

The network coding paradigm has seen significant inter

property of source information, and ask whether it is of sig- 1) InstanceZ = (G,S,T,C,D) describes a directed,
nificant importance in the study of network coding capasitie acyclic graph G(V, E), a multiset of source nodes
Loosely speaking, we consider the following question. All S = {s1,...,s:} C V, a set of terminal node%" =
notions that appear below will be defined rigorously in the {t1,...,tj7|} C V, a capacity vectoC’ = [c. : e € E],
upcoming Section Il and a demand matri0 = [d; ; : (¢,7) € [k] x [|T]],
Question 1: Given an instance to the multi-source multi- ~ where for any real numbe¥ > 1, [N] = {1,..., [N]}.
terminal network coding problem, does the capacity region ~ Without loss of generality, we assume that each source
differ significantly when one removes the requirement that t s € S has no incoming edges and that each terminal
source information is independent? t € T has no outgoing edges. Capacity vectOr
Clearly, if the source information is highly dependentsit i describes the capacity. for each edge: € E. Binary
not hard to devise instances to the network coding problem in ~ demand matrixD specifies which sources are required
which the corresponding capacity region differs signiftban at each terminal; namely, ; = 1 if and only if terminal

from that in which source information is independent. How-  %; requires the information originating at souree
ever, what is the trade off between independence and cgpacit 2) The block lengthn specifies the number of available

Can it be that the trade off is nabntinuou® network uses. _

The main contribution of this work is in a connection we 3) The source vectoX’ = (X;,...,X}) describes the
make between the question at hand and the recently studied SOurce random variabl&; available at each source.
“edge removal” problem [12], [13], [14] in which one asks to Random variablesY, ..., X}, may be independent or
quantify the loss in capacity when removing a single edgefro dependent.

a given network. For all but a few special cases of networks, solution X,, = {X.} to the k-source coding problem
the effect on capacity of single edge removal is not fullyZ,n, X) assigns a random variablg, to each edge € F
understood. We show that Question 1 is closely related to twéith the following two properties:

edge removal problem. In particular, we show that quamtgyi 1) Functionality: for ¢ = (u,v), X. is a deterministic
the rate loss in the former will imply a quantification for the function £. of the random variable(., corresponding
latter and vice-versa. to incoming edges of node Equivalently, setting7(u)

. . to be the set of incoming edges ©f Out(u) the set of
This work was supported in part by NSF grant CCF-1018741, d&fnt

480/08 and the Open University of Israel's research fundr{gno. 46114). outgoing edges from:, and settingX,n(u) - {Xe/ |
Work done at part while the first author was visiting Caltech. ¢ € In(u)}, Xouw = {Xe | € € Out(u)}; then



H(X0ut(u)| X1n(u)) = 0. If e is an edge leaving a sourceuniform in [2°"/*] and also independent of thé's. It follows
nodes, then the sourceX’; originating at node are the that X = X;,..., X} is 6-dependent. Now, ifZ is feasible
input to f.. on source informationX with block length n, then it is

2) Capacity: For each edge it holds thatH (X.) < c.n. feasible with source informatioX! = (Y;, z) for any fixed
Given the acyclic structure ofy, the value X, transmitted Vvalue z € [29"/%]. However, the random variableX/ are
across each edge can be defined inductively as a functionnefv independent and of ratél (X/) = (R; — 6/k)n. We
the source random variabléé using the topological order of conclude that is Rs/, = (R1 —d/k, ..., Ry, —d/k) feasible
G. on independent sources.

A network source coding problerZ, n, X) is said to be
feasibleif there exists a network source cog, such that all
terminals can decode the information they require. Fogynall The edge removal problem compares the rates achievable
for each terminak, one defines a decoding functign that On a given instanc& before and after an edgeof capacity
maps the information on the incoming edges tif the sources c. is removed from the network:.
demanded byt. Equivalently, one requires that for every Proposition 1 (Edge removalltetZ = (G, S,T,C, D) be
messageX; required byt it holds thatH (X;|Xp,,«)) = 0. a network instance. Let € G be an edge of capacity. Let

In this work we are interested in the comparison betweéri = (G¢, 5, T, C, D) be the network obtained by replaciag
source coding problems in which the source random variablih the networkG* in which edgee is removed. Let > 0 be
are independent and those in which the source random va&®me constant. LeR = (Ry,..., Ry), and letR.; = (R; —
ables arealmostindependent. ¢d, ..., R, — ¢d). There exists a universal constant such

Definition 1 ¢-dependence)A set of random variables that if 7 is R-feasible on independent sources thgnis R..s-
Xi,..., Xy, is said to bed-dependent if>, H(X;) — feasible on independent sources.

H(X1,...,X%) < 4. Independent random variables are
dependent.

Let R = (Ry,..., R;) be a rate vector. A network instance Addressing Questions 1 and 2 we consider the following
7 is said to beR-feasible on independent sourdésnd only —proposition:
if there exists a block lengttn and a set of independent Proposition 2 (Source coding)etZ = (G, S,T,C, D) be
random variablesX = (X;,..., X}) with eachX; uniform a network instance. Let > 0 be some constant. L&t > 0.
over X; = [2%"] such that thek-source coding problem Let R = (Ry,..., Ry), and letR.s = (R —cd, ..., Ry, —cd).
(Z,n, X) is feasible. Similarly, a network instan@is said There exists a universal constansuch that ifZ is R-feasible
to be R-feasible ons-dependent sourcei and only if there on dJ-dependent sources thénis R .;-feasible on independent
exists a block lengthn and a vector of random variablessources.
X = (X,...,Xy,) for which (a)2F | H(X,)— H(X) < én
and (b) for alli, H(X;) > R;n; such that thé:-source coding

A. The edge removal proposition

B. The source coding proposition

1. M AIN RESULT

problem(Z,n, X) is feasible. Our main result shows that the two propositions above are
In what follows we address the following question: equivalent.
Question 2: IfZ is R = (Ry,...,Ry)-feasible oné- Theorem 1:Proposition 1 is true if and only if Proposition 2

dependent sources, what can be said about its feasibility ntrue.
independent sources? For example, is it true that in thie@as  To prove Theorem 1 we will use the following two lemmas
is Rs = (R1—9, ..., R,—9) feasible on independent sourcesproven in Sections V and VI respectively.

While we do not resolve Question 2, we show a strong con-Lemma 1 (Edge removal lemmd)et Z = (G, S,T,C, D)
nection between this question and theége removaproblem be a network instance. Let € G be an edge of capacity.
studied in [12], [13], [14]. Let Z¢ = (G*, S, T, B) be the instance obtained by replacing

Remark 1:Itis natural to also define the notion of feasibiltyG' with the networkG€ in which edgee is removed. LetR =
with respect toall J-dependent sources. Namely, a networkR, ..., Ry), and letRs = (R — 6,..., R, —0). If Z is
instanceZ is said to bestrongly R-feasible ond-dependent R-feasible on independent sources tt¥nis Rs-feasible on
sources if and only if there exists a block lengtkuch that for ¢-dependent sources.

everyvector of random variable¥ = (X3, ..., X}) for which Lemma 2 (Collocated source codingfonsider a network
(@) Zle H(X;)— H(X) < én and (b) for alli, H(X;) > instanceZ = (G, S,T,C, D) in which all sources are col-
R;n; the k-source coding probleniZ, n, X) is feasible. located at a single node i¥ (i.e., eachs; € S equals the

Under this definition it is not hard to verify that any instancsame vertexs € V). Let ¢ > 0 be some constant. Lét > 0.
Z which is strongly R = (Ry,...,Ry) feasibility for §- LetR = (Ry,...,Ry), and letR.s = (R1—cd,..., Ri—cd).
dependent sources is al$ty, = (R, — d/k,..., R, —d/k) There exists a universal constansuch that ifZ is R-feasible
feasible for independent sources. To see this connectiom d-dependent sources th&nis R.s-feasible on independent
consider a set of-dependent sourcek,, ..., X; where each sources.
X; is equal to the pai(Y;, Z) where for blocklength: the The following corollary of Lemma 2 is also proven in
Yy’'s are uniform in[2(%i=%/k)"] and independent, and is Section VI:



Corollary 1 (Super source)Let Z = (G, S,T,C,D) be independent sources. Lemma 1 implies thatis R; feasible
a network instance. Let > 0 be some (sufficiently large) ond-dependent sources. Now, using Proposition 2, it holds that
constant. Letd > 0. Assume there is a vertex € V (so- Z¢is R(4.,)s feasible on independent sources. This suffices
called a “super source”) which has knowledge of all sourde complete our proof witle; = 1 + co. [ ]
information X = (X4,..., X%), and in addition has outgoing
edges of capacity:s to each and every source node $h V. PROOF OFLEMMA 1
Let R = (Ry,...,Rk), and letR.s = (R —¢0, ..., Ry —cd). We start with the following definition.
There exists a universal constansuch that ifZ is R-feasible Definition 2: Let m be an integer. A vecto(ha)acim
on §-dependent sources thénis R s-feasible on independentindexed by all subsets din] is said to beentropicif there
sources. exist a vector of random variabléX, ..., X,,) such thath,
is the joint entropy of the random variabl¢X; | i € a}. Let
I';, be the set of all entropic vectors representingandom
We now present the proof of Theorem 1 using Lemma 1 andriables.
Corollary 1. Our proof will have two directions, each giveni The only property we will need froni™ in this work is

IV. PROOF OFTHEOREM 1

a separate subsection below. that it is closed with respect to linear combinations over th
. . » positive integers, namely:
A. Proposition 1 implies Proposition 2 Fact 1 (e.g., [15], p. 366):For {h;}{_, C T, and positive

In what follows, we show for the constantin Corollary 1 integers{a;}‘_, it holds that>" a;h; € T',.
that Proposition 1 is true with constantimplies Proposition 2 We now turn to prove Lemma 1. L&t = (G, S,T,C, D)
with constantcy = ¢ + ¢;. be a network instance. LeR = (R;,...,Ry). Lete € G
Proof: Let Z = (G, S,T,C, D) be a network instance be an edge of capacity. Let Z¢ = (G¢,S,T,C, D) be the
which is R-feasible oné-dependent sources. We show tlat instance obtained by replacing with the network G¢ in
is R.,s-feasible on independent sources fgr= c + ¢;. which edgee is removed. LetRs = (Ry — 9,..., R — 0).
We consider2 additional instanceg; = (G1,51,7,C,D) Assume thatZ is R feasible on independent sources. Thus,
andZ, = (G, S2, T, C, D) similar to those considered in [9], there exists a block length, and a codeX,, realizing the
[14]. We start by defining the netwoik,; networkG, is then feasibility of thek-source coding problerZ, n, X) with X =

obtained from networkG, by a single edge removal. {X1,..., X} in which eachX; is uniformly and indepen-
Network G is obtained fromG by addingk new source dently distributed ovef2:]. Let X = (X1,..., Xz, X,,) =
nodessy, - - , s, a new “super-node?, and a relay node. (Xi,..., Xy, {Xc}eecr)-

For eachs; € G, there is a capacity?; edge (s}, s;) from Consider the entropic vectdi corresponding taX. Let
new sources; to old sources;. For eachs; € G, there is a ¥ be the union of the supports of the random variables
capacity?; edge(s}, s) from new source, to the super-node (X1, ..., X, {X.}ecr). It holds that|>| is finite. This fol-

s. Let ¢ be the constant from Corollary 1. There is a capacityews from the fact that in our setting the probability dis-
co edge(s, r) from the super-sourceto the relayr; this edge tribution governingX (and in particular the source random
is the networkbottleneck Finally, the relayr is connected to variables X, ..., X}) has finite support of sizél?_ 2%
each source node; by an edge(r, s;) of capacitycé. The In what follows, we denote the support sitk27" by N.
new source sebs is {s/,..., s, }. ForZ;, we setS; = S, Notice, that all events of the forniX., = o for ¢/ € E have
and G, = G, apart from the removal of the bottleneck edgerobability which is an integer multiple of/N. We will use
(s,r) of capacityco. this fact shortly in our analysis.

Our assertion now follows from the following arguments. Let e be the edge that we are removing, and assume
First note thatZ; is R feasible ond-dependent sources. Thisthat ¢, = §. For any valuesc € X, consider the vector
follows directly from our construction. Similarlyl, is also of random variables drawn from the conditional distribatio
R feasible ond-dependent sources. Now, by Corollary lon X given X, = o; we denote this random variable by
instanceZ, is R.s-feasible on independent sources. UsingX” = {(X.|X. = 0)}ecpuq,..x}- LELh? be the entropic
Proposition 1, we have thaf, is R(..,)s feasible on in- vector inT'* corresponding taX“, and consider the convex
dependent sources. (Herg is the universal constant fromcombinationh® = )~ Pr[X. = o]h?. As I'* is not convex,
Proposition 1.) Finally, we conclude thdtis also R(.,.,)s the vectorh® is not necessarily i*. However, as noted
feasible on independent sources. B above, there exist integers, such thatPr[X, = o] = n,/N.

. o . Thus, by Fact 1,
B. Proposition 2 implies Proposition 1

We now prove that Proposition 2 is true with constapt N-h®=N- ZPY[XE =olh” = Z”oha el

implies Proposition 1 is true with constant = 1 + c¢». o o

Proof: LetZ = (G, S, T, C, D) be a network instance. LetLet X¢ = (X7, X5,..., X¢, {XS }eer) be the random vari-
e € G be an edge (of capacity). Let Z¢ = (G¢,S,T,C, D) ables corresponding t&v - he. In what follows, we show
be the instance obtained by replaci@gwith the networkG® via the codeX* that the problem(Z¢, Nn, {X7{,..., X;}) is
in which the edge is removed. Assume thdtis R feasible on Rs = (R; — 6, ..., Ri — ¢) feasible ond-dependent sources.



Effectively, the random variables iX¢ correspond to the
variables inX conditioned onX.. For any subsetv C F U

{1,2,...,k} let X, = {X. | ¢ € o}. Similarly define X¢.
Then,
H(X¢) = N-h¢ :N-ZPr
= N- ZPr Xo | Xe=0)
= NH(Xa|Xe) = N(H(Xq, X.) — H(X.)).

We conclude that for each subset(and in particular for
a = {i} corresponding to a certain sourgg it holds that

NH(X,) > H(XE) > N(H(X4) — 6n).

This implies thatXy,. .., X; ared-dependent withH (X[) >

Nn(R; — 6). Namely, forS = {1,..., k}:
H(X§) = NH(Xs|X.)=N(H(Xs) - H(X.))
N <zk: H(X;)— 5n>
> N (zk: H(X|X,) - 5n>
ZH_(lX) — 6Nn.
In addition, we have that (X¢) = N - H(X.|X.) =

and thus throughout we may consider the valueXgfto be

For theCapacityconstraints, for each edgé € E it holds
that H(X¢) = NH(X.|X.) < NH(X.) < Nncer.

Finally, to show that(Z¢, Nn,(Xy,..., X)) is Rs =
(Ry—90,...,R;—0) feasible orv-dependent sources, we need
to show for any terminat that requires source informatian
that H(XF?| X7, ;) = 0. This follows similar to the previous
arguments based on the fact tatsatisfiesH (X;| X, ) =
0. Specifically,

0 < H(XJ|X7,0)
= N(HXrn@),ilXe) = H(X )| Xe))
= N(H(Xi|X1n@), Xe))
< N(H(Xi| X)) =0

V1. PROOF OFLEMMA 2 AND COROLLARY 1

The proof that follows uses two intermediate claims proven
in Section VI-A.

Claim 1: Let Z = (G, S,T,C, D) be a network instance.
Leto > 0. Let R = (Ry,...,Rk), and letRs = (R —
d,...,Rr — 96). If T is R-feasible oné-dependent sources
(Xq,.. Xk) thenZ is Rs-feasible on20-dependent sources
(X1,...,Xy) such thatX; is distributed over an alphabét;
of size at mospH(X)(1+5),

Using Claim 1 we may assume throughout this section that
our source random variables &é& dependent, and that each
X, has entropyH (X;) > R;n — én and supportt’; of size at
most27:" 9" For ease of presentation, we $&(X;) = R;n
and considetX = (X;,...,Xy) to bed dependent. Thus the

a constant. Setting. to a constant corresponds to communi¢onstants: for Lemma 2 and Corollary 1 need to be increased

cation over the graplz® (that does not contain the edgeat
all).

We now turn to analyze th&unctionality and Capacity
constraints with respect t&X¢. For Functionality, let u be
a vertex inG, and let Out(u) and In(u) be its set of
outgoing and incoming edges. For every vertexthat is
not the head ok, we have thatt (X ot (), rn(u) | Xinw)) =
H<XOut(u)|XIn(u)) =0, and

0 < H(XSuw) Xin(w)

H(XEui(u), ) — H( X o))
N(H(Xout(u), )| Xe) = H( Xyl Xe))
N(H(Xout(u)| Xrn(u)s Xe))
N(H(Xout(w) | Xin(w))) = 0.

<

The third equality follows from the chain rule. The final

inequality follows since conditioning reduces entropy.

Whenw is the head ok, the set/n(u) in G differs from
the set/n®(u) in G¢. Specifically,In(u) = In®(u) U {e}. In
this case,

0 H(X7,. (w) )

H(Xln"(u) |Xe))

() Ine (u)) —
(XOut (w),Ine (u) | Xe) —
(Xout(u),1ne (u),e| Xe) = H(Xrne(u),el Xe))
(Xout(u).1n(w) | Xe) = H(Xrn(u)|Xe))
“H(Xout(w) | X1n(u) =0

EEEN

H(X5
(
(
(

IA ]
22225

accordingly with respect to the constamsomputed below.
Claim 2: Let 6 > 0. Let X = (X4,..., X)) be a set of
random variables over alphabetd’y, .. .,Xk) such that (a)
S¥ L H(X;) — H(X) < &n, (b) for eachi the marginal
distribution satisfiesH (X;) = R;n, and (c) eachX; has
supportX; of size at mos2’*"+9"_ There exist a constamnt
such that for each there exists a partitio®; = P; 1,..., P,
of X, in which (a) eachr; is at least2:"~<" (b) for each
i, j, andj’, the size ofP; ; equals that ofP; ;, and (c) for

every (j1,...,jkx) With j; € [r;] the product space
P(ji, - yjk) = Pijy, X Paj, X ... Py j,
satisfies
Pr((X1,...,X%) € P(j1,--., k)] > 0.

We now prove Lemma 2 using Claim 2 above. We then
prove Corollary 1. Our proof follows the line of proof appear
ing in [9], [14]. LetZ = (G, S, T, C, D) be a network instance
in which all sources are collocated at a single nodé&/ir_et
R = (Ry,...,Rk). We assume thaf is R feasible oné
dependent sources. The following argument shows that there
exists a constant such thatZ is R.s feasible on independent
sources.

Let n be a block length such that there exists random
source variables¥ = (X1,..., X;) with H(X;) = R;n and
H(X) > >, Rin — on such that the corresponding commu-
nication problem is feasible. The general idea is concdigtua



simple. AsX,,..., X} satisfy the condition in Claim 2, we otherwise. For anyj;, j» we compute the probability that
may define the corresponding partitiod ;, product sets P, ;, x P ;, intersectsl’ defined above. Let; € P j,. As

P(j1,---,jx), and values; appearing in the claim. Considerz; is in A;, the probability that there exists an such that
the random variableX, ..., X\ where eachX; is uniformly (z1,22) € I' is at least (for sufficiently large)
distributed over the sefr;]. As r; is at least2/m—<on, gRan_gRyn—28n—1
H(X) >3, Rn—ckén. As 1— ( 2¢’sn ) ~1— 6—2“’*2)5"
9Ran -
Pr{(X1,...,Xk) € P(j1,.--, k)] >0 (20750

Using the union bound, this implies that there exist partii

for all j; € [r;], we can identify (at least) a single-tuple P, and P, for which each and every “cellP, ;, x P,

(xl.’jl’“"xk»jk) € P(]l»""j_k) for which the_ communl- niersectr. Dividing the remaining elements; among the

cation of (z1,...,x) over Z is successful (yields correct ¢ o P, evenly, and noticing thar, — |A,|/2°07 >
. ; : o 1 . >

deco%ng)':[r?'h; enaples tth?:folIOW|ngkc:)m|mup|cat|or_1 SEEMY R, n—(+2)5n-1 gyfiices to prove our assertion fef = 3

over £ wi as Input. For eVeryr-tuple ji,....Jk € \yhjle the the constant in the claim equals’ + 2 = 5.
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