
Source Coding for Dependent Sources
M. Langberg

The Open University of Israel
mikel@openu.ac.il

M. Effros
California Institute of Technology

effros@caltech.edu

Abstract—In this work, we address the capacity region of
multi-source multi-terminal network communication problems,
and study the change in capacity when one moves formindepen-
dent to dependent source information. Specifically, we ask whether
the trade off between capacity and source independence is of
continuous nature. We tie the question at hand to that ofedge
removal which has seen recent interest.

I. I NTRODUCTION

The network coding paradigm has seen significant interest
in the last decade (see e.g., [1], [2], [3], [4], [5] and references
therein). In the multiple source network coding problem, itis
common to assume that the information available at different
source nodes isindependent. Under this assumption, several
aspects of network coding have been explored, including the
study of the capacity region of the multi-source multi-terminal
network coding problem, e.g. [6], [7], [8], [9], [10], [11].

In this work we focus our study on the “independence”
property of source information, and ask whether it is of sig-
nificant importance in the study of network coding capacities.
Loosely speaking, we consider the following question. All
notions that appear below will be defined rigorously in the
upcoming Section II.

Question 1: Given an instance to the multi-source multi-
terminal network coding problem, does the capacity region
differ significantly when one removes the requirement that the
source information is independent?

Clearly, if the source information is highly dependent, it is
not hard to devise instances to the network coding problem in
which the corresponding capacity region differs significantly
from that in which source information is independent. How-
ever, what is the trade off between independence and capacity?
Can it be that the trade off is notcontinuous?

The main contribution of this work is in a connection we
make between the question at hand and the recently studied
“edge removal” problem [12], [13], [14] in which one asks to
quantify the loss in capacity when removing a single edge from
a given network. For all but a few special cases of networks,
the effect on capacity of single edge removal is not fully
understood. We show that Question 1 is closely related to the
edge removal problem. In particular, we show that quantifying
the rate loss in the former will imply a quantification for the
latter and vice-versa.
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As the edge removal problem is open, our connection does
not progress in answering Question 1, but rather puts it in
a broader perspective. For example, as a corollary of our
equivalence, we show that removing an edge of vanishing
capacity (in the block length) from a network will have a
vanishing effect on the capacity of the network if and only if
the trade off in Question 1 is continuous (as before, rigorous
definitions will be given in Section II). Using recent results
of ours from [14], this implies a similar equivalence between
Question 1 and the advantage in network coding capacity when
one allows anε > 0 error in communication as opposed to
zero error communication.

II. M ODEL

A k-source coding problem(I, n,X) is defined by (a) a
network instanceI, (b) a block lengthn, and (c) a vector of
random variablesX.

1) InstanceI = (G,S, T, C,D) describes a directed,
acyclic graph G(V,E), a multiset of source nodes
S = {s1, . . . , sk} ⊂ V , a set of terminal nodesT =
{t1, . . . , t|T |} ⊂ V , a capacity vectorC = [ce : e ∈ E],
and a demand matrixD = [di,j : (i, j) ∈ [k] × [|T |],
where for any real numberN ≥ 1, [N ] = {1, . . . , ⌊N⌋}.
Without loss of generality, we assume that each source
s ∈ S has no incoming edges and that each terminal
t ∈ T has no outgoing edges. Capacity vectorC
describes the capacityce for each edgee ∈ E. Binary
demand matrixD specifies which sources are required
at each terminal; namely,di,j = 1 if and only if terminal
tj requires the information originating at sourcesi.

2) The block lengthn specifies the number of available
network uses.

3) The source vectorX = (X1, . . . , Xk) describes the
source random variableXi available at each sourcesi.
Random variablesX1, . . . , Xk may be independent or
dependent.

A solution Xn = {Xe} to the k-source coding problem
(I, n,X) assigns a random variableXe to each edgee ∈ E
with the following two properties:

1) Functionality : for e = (u, v), Xe is a deterministic
function fe of the random variablesXe′ corresponding
to incoming edges of nodeu. Equivalently, settingIn(u)
to be the set of incoming edges ofu, Out(u) the set of
outgoing edges fromu, and settingXIn(u) = {Xe′ |
e′ ∈ In(u)}, XOut(u) = {Xe′ | e′ ∈ Out(u)}; then



H(XOut(u)|XIn(u)) = 0. If e is an edge leaving a source
nodes, then the sourcesXi originating at nodes are the
input to fe.

2) Capacity: For each edgee it holds thatH(Xe) ≤ cen.
Given the acyclic structure ofG, the valueXe transmitted
across each edge can be defined inductively as a function of
the source random variablesX using the topological order of
G.

A network source coding problem(I, n,X) is said to be
feasibleif there exists a network source codeXn such that all
terminals can decode the information they require. Formally,
for each terminalt, one defines a decoding functiongt that
maps the information on the incoming edges oft to the sources
demanded byt. Equivalently, one requires that for every
messageXi required byt it holds thatH(Xi|XIn(t)) = 0.

In this work we are interested in the comparison between
source coding problems in which the source random variables
are independent and those in which the source random vari-
ables arealmost independent.

Definition 1 (δ-dependence):A set of random variables
X1, . . . , Xk is said to be δ-dependent if

∑

i H(Xi) −
H(X1, . . . , Xk) ≤ δ. Independent random variables are0-
dependent.

Let R = (R1, . . . , Rk) be a rate vector. A network instance
I is said to beR-feasible on independent sourcesif and only
if there exists a block lengthn and a set of independent
random variablesX = (X1, . . . , Xk) with eachXi uniform
over X i = [2Rin] such that thek-source coding problem
(I, n,X) is feasible. Similarly, a network instanceI is said
to beR-feasible onδ-dependent sourcesif and only if there
exists a block lengthn and a vector of random variables
X = (X1, . . . , Xk) for which (a)

∑k
i=1 H(Xi)−H(X) ≤ δn

and (b) for alli, H(Xi) ≥ Rin; such that thek-source coding
problem(I, n,X) is feasible.

In what follows we address the following question:
Question 2: If I is R = (R1, . . . , Rk)-feasible on δ-

dependent sources, what can be said about its feasibility on
independent sources? For example, is it true that in this caseI
is Rδ = (R1−δ, . . . , Rk−δ) feasible on independent sources?

While we do not resolve Question 2, we show a strong con-
nection between this question and theedge removalproblem
studied in [12], [13], [14].

Remark 1: It is natural to also define the notion of feasibilty
with respect toall δ-dependent sources. Namely, a network
instanceI is said to bestrongly R-feasible onδ-dependent
sources if and only if there exists a block lengthn such that for
everyvector of random variablesX = (X1, . . . , Xk) for which
(a)
∑k

i=1 H(Xi) − H(X) ≤ δn and (b) for all i, H(Xi) ≥
Rin; the k-source coding problem(I, n,X) is feasible.

Under this definition it is not hard to verify that any instance
I which is strongly R = (R1, . . . , Rk) feasibility for δ-
dependent sources is alsoRδ/k = (R1 − δ/k, . . . , Rk − δ/k)
feasible for independent sources. To see this connection,
consider a set ofδ-dependent sourcesX1, . . . , Xk where each
Xi is equal to the pair(Yi, Z) where for blocklengthn the
Yi’s are uniform in [2(Ri−δ/k)n] and independent, andZ is

uniform in [2δn/k] and also independent of theYi’s. It follows
that X = X1, . . . , Xk is δ-dependent. Now, ifI is feasible
on source informationX with block length n, then it is
feasible with source informationX ′

i = (Yi, z) for any fixed
value z ∈ [2δn/k]. However, the random variablesX ′

i are
now independent and of rateH(X ′

i) = (Ri − δ/k)n. We
conclude thatI is Rδ/k = (R1− δ/k, . . . , Rk − δ/k) feasible
on independent sources.

A. The edge removal proposition

The edge removal problem compares the rates achievable
on a given instanceI before and after an edgee of capacity
ce is removed from the networkG.

Proposition 1 (Edge removal):Let I = (G,S, T, C,D) be
a network instance. Lete ∈ G be an edge of capacityδ. Let
Ie = (Ge, S, T, C,D) be the network obtained by replacingG
with the networkGe in which edgee is removed. Letc > 0 be
some constant. LetR = (R1, . . . , Rk), and letRcδ = (R1 −
cδ, . . . , Rk − cδ). There exists a universal constantc, such
that if I is R-feasible on independent sources thenIe is Rcδ-
feasible on independent sources.

B. The source coding proposition

Addressing Questions 1 and 2 we consider the following
proposition:

Proposition 2 (Source coding):Let I = (G,S, T, C,D) be
a network instance. Letc > 0 be some constant. Letδ > 0.
Let R = (R1, . . . , Rk), and letRcδ = (R1−cδ, . . . , Rk−cδ).
There exists a universal constantc, such that ifI is R-feasible
on δ-dependent sources thenI is Rcδ-feasible on independent
sources.

III. M AIN RESULT

Our main result shows that the two propositions above are
equivalent.

Theorem 1:Proposition 1 is true if and only if Proposition 2
is true.

To prove Theorem 1 we will use the following two lemmas
proven in Sections V and VI respectively.

Lemma 1 (Edge removal lemma):Let I = (G,S, T, C,D)
be a network instance. Lete ∈ G be an edge of capacityδ.
Let Ie = (Ge, S, T,B) be the instance obtained by replacing
G with the networkGe in which edgee is removed. LetR =
(R1, . . . , Rk), and letRδ = (R1 − δ, . . . , Rk − δ). If I is
R-feasible on independent sources thenIe is Rδ-feasible on
δ-dependent sources.

Lemma 2 (Collocated source coding):Consider a network
instanceI = (G,S, T, C,D) in which all sources are col-
located at a single node inG (i.e., eachsi ∈ S equals the
same vertexs ∈ V ). Let c > 0 be some constant. Letδ > 0.
Let R = (R1, . . . , Rk), and letRcδ = (R1−cδ, . . . , Rk−cδ).
There exists a universal constantc, such that ifI is R-feasible
on δ-dependent sources thenI is Rcδ-feasible on independent
sources.

The following corollary of Lemma 2 is also proven in
Section VI:



Corollary 1 (Super source):Let I = (G,S, T, C,D) be
a network instance. Letc > 0 be some (sufficiently large)
constant. Letδ > 0. Assume there is a vertexs ∈ V (so-
called a “super source”) which has knowledge of all source
informationX = (X1, . . . , Xk), and in addition has outgoing
edges of capacitycδ to each and every source node inS.
Let R = (R1, . . . , Rk), and letRcδ = (R1−cδ, . . . , Rk−cδ).
There exists a universal constantc, such that ifI is R-feasible
on δ-dependent sources thenI is Rcδ-feasible on independent
sources.

IV. PROOF OFTHEOREM 1

We now present the proof of Theorem 1 using Lemma 1 and
Corollary 1. Our proof will have two directions, each given in
a separate subsection below.

A. Proposition 1 implies Proposition 2

In what follows, we show for the constantc in Corollary 1
that Proposition 1 is true with constantc1 implies Proposition 2
with constantc2 = c+ c1.

Proof: Let I = (G,S, T, C,D) be a network instance
which isR-feasible onδ-dependent sources. We show thatI
is Rc2δ-feasible on independent sources forc2 = c+ c1.

We consider2 additional instancesI1 = (G1, S1, T, C,D)
andI2 = (G2, S2, T, C,D) similar to those considered in [9],
[14]. We start by defining the networkG2; networkG1 is then
obtained from networkG2 by a single edge removal.

Network G2 is obtained fromG by addingk new source
nodess′1, · · · , s

′
k, a new “super-node”s, and a relay noder.

For eachsi ∈ G, there is a capacity-Ri edge(s′i, si) from
new sources′i to old sourcesi. For eachs′i ∈ G2, there is a
capacity-Ri edge(s′i, s) from new sources′i to the super-node
s. Let c be the constant from Corollary 1. There is a capacity-
cδ edge(s, r) from the super-sources to the relayr; this edge
is the networkbottleneck. Finally, the relayr is connected to
each source nodesi by an edge(r, si) of capacitycδ. The
new source setS2 is {s′1, . . . , s

′
k}. For I1, we setS1 = S2,

andG1 = G2 apart from the removal of the bottleneck edge
(s, r) of capacitycδ.

Our assertion now follows from the following arguments.
First note thatI1 is R feasible onδ-dependent sources. This
follows directly from our construction. Similarly,I2 is also
R feasible onδ-dependent sources. Now, by Corollary 1,
instanceI2 is Rcδ-feasible on independent sources. Using,
Proposition 1, we have thatI1 is R(c+c1)δ feasible on in-
dependent sources. (Herec1 is the universal constant from
Proposition 1.) Finally, we conclude thatI is alsoR(c+c1)δ

feasible on independent sources.

B. Proposition 2 implies Proposition 1

We now prove that Proposition 2 is true with constantc2
implies Proposition 1 is true with constantc1 = 1 + c2.

Proof: Let I = (G,S, T, C,D) be a network instance. Let
e ∈ G be an edge (of capacityδ). Let Ie = (Ge, S, T, C,D)
be the instance obtained by replacingG with the networkGe

in which the edgee is removed. Assume thatI isR feasible on

independent sources. Lemma 1 implies thatIe is Rδ feasible
onδ-dependent sources. Now, using Proposition 2, it holds that
Ie is R(1+c2)δ feasible on independent sources. This suffices
to complete our proof withc1 = 1 + c2.

V. PROOF OFLEMMA 1

We start with the following definition.
Definition 2: Let m be an integer. A vector(hα)α⊂[m]

indexed by all subsets of[m] is said to beentropic if there
exist a vector of random variables(X1, . . . , Xm) such thathα

is the joint entropy of the random variables{Xi | i ∈ α}. Let
Γ∗
m be the set of all entropic vectors representingm random

variables.
The only property we will need fromΓ∗ in this work is

that it is closed with respect to linear combinations over the
positive integers, namely:

Fact 1 (e.g., [15], p. 366):For {hi}
ℓ
i=1 ⊂ Γ∗

m and positive
integers{ai}ℓi=1 it holds that

∑

aihi ∈ Γ∗
m.

We now turn to prove Lemma 1. LetI = (G,S, T, C,D)
be a network instance. LetR = (R1, . . . , Rk). Let e ∈ G
be an edge of capacityδ. Let Ie = (Ge, S, T, C,D) be the
instance obtained by replacingG with the networkGe in
which edgee is removed. LetRδ = (R1 − δ, . . . , Rk − δ).
Assume thatI is R feasible on independent sources. Thus,
there exists a block lengthn, and a codeXn realizing the
feasibility of thek-source coding problem(I, n,X) with X =
{X1, . . . , Xk} in which eachXi is uniformly and indepen-
dently distributed over[2Rin]. Let X = (X1, . . . , Xk,Xn) =
(X1, . . . , Xk, {Xe}e∈E).

Consider the entropic vectorh corresponding toX. Let
Σ be the union of the supports of the random variables
(X1, . . . , Xk, {Xe}e∈E). It holds that|Σ| is finite. This fol-
lows from the fact that in our setting the probability dis-
tribution governingX (and in particular the source random
variablesX1, . . . , Xk) has finite support of sizeΠk

i=12
Rin.

In what follows, we denote the support sizeΠi2
Rin by N .

Notice, that all events of the formXe′ = σ for e′ ∈ E have
probability which is an integer multiple of1/N . We will use
this fact shortly in our analysis.

Let e be the edge that we are removing, and assume
that ce = δ. For any valueσ ∈ Σ, consider the vector
of random variables drawn from the conditional distribution
on X given Xe = σ; we denote this random variable by
X

σ = {(Xe′ |Xe = σ)}e′∈E∪{1,...,k}. Let hσ be the entropic
vector in Γ∗ corresponding toXσ, and consider the convex
combinationhe =

∑

σ Pr[Xe = σ]hσ. As Γ∗ is not convex,
the vectorhe is not necessarily inΓ∗. However, as noted
above, there exist integersnσ such thatPr[Xe = σ] = nσ/N .
Thus, by Fact 1,

N · he = N ·
∑

σ

Pr[Xe = σ]hσ =
∑

σ

nσh
σ ∈ Γ∗

Let Xe = (Xe
1 , X

e
2 , . . . , X

e
k , {X

e
e′}e′∈E) be the random vari-

ables corresponding toN · he. In what follows, we show
via the codeXe that the problem(Ie, Nn, {Xe

1 , . . . , X
e
k}) is

Rδ = (R1 − δ, . . . , Rk − δ) feasible onδ-dependent sources.



Effectively, the random variables inXe correspond to the
variables inX conditioned onXe. For any subsetα ⊆ E ∪
{1, 2, . . . , k} let Xα = {Xe′ | e

′ ∈ α}. Similarly defineXe
α.

Then,

H(Xe
α) = N · he

α = N ·
∑

σ

Pr[Xe = σ]hσ
α

= N ·
∑

σ

Pr[Xe = σ]H(Xα | Xe = σ)

= NH(Xα|Xe) = N(H(Xα, Xe)−H(Xe)).

We conclude that for each subsetα (and in particular for
α = {i} corresponding to a certain sourcesi) it holds that

NH(Xα) ≥ H(Xe
α) ≥ N(H(Xα)− δn).

This implies thatXe
1 , . . . , X

e
k areδ-dependent withH(Xe

i ) ≥
Nn(Ri − δ). Namely, forS = {1, . . . , k}:

H(Xe
S) = NH(XS |Xe) = N(H(XS)−H(Xe))

= N

(

k
∑

i=1

H(Xi)− δn

)

≥ N

(

k
∑

i=1

H(Xi|Xe)− δn

)

=
∑

i

H(Xe
i )− δNn.

In addition, we have thatH(Xe
e ) = N · H(Xe|Xe) = 0,

and thus throughout we may consider the value ofXe
e to be

a constant. SettingXe to a constant corresponds to communi-
cation over the graphGe (that does not contain the edgee at
all).

We now turn to analyze theFunctionality and Capacity
constraints with respect toXe. For Functionality, let u be
a vertex in G, and let Out(u) and In(u) be its set of
outgoing and incoming edges. For every vertexu that is
not the head ofe, we have thatH(XOut(u),In(u)|XIn(u)) =
H(XOut(u)|XIn(u)) = 0, and

0 ≤ H(Xe
Out(u)|X

e
In(u))

= H(Xe
Out(u),In(u))−H(Xe

In(u))

= N(H(XOut(u),In(u)|Xe)−H(XIn(u)|Xe))

= N(H(XOut(u)|XIn(u), Xe))

≤ N(H(XOut(u)|XIn(u))) = 0.

The third equality follows from the chain rule. The final
inequality follows since conditioning reduces entropy.

Whenu is the head ofe, the setIn(u) in G differs from
the setIne(u) in Ge. Specifically,In(u) = Ine(u) ∪ {e}. In
this case,

0 ≤ H(Xe
Out(u),Ine(u))−H(Xe

Ine(u))

= N(H(XOut(u),Ine(u)|Xe)−H(XIne(u)|Xe))

= N(H(XOut(u),Ine(u),e|Xe)−H(XIne(u),e|Xe))

= N(H(XOut(u),In(u)|Xe)−H(XIn(u)|Xe))

≤ N ·H(XOut(u)|XIn(u)) = 0

For theCapacityconstraints, for each edgee′ ∈ E it holds
thatH(Xe

e′) = NH(Xe′ |Xe) ≤ NH(Xe′) ≤ Nnce′ .
Finally, to show that(Ie, Nn, (Xe

1 , . . . , X
e
k)) is Rδ =

(R1−δ, . . . , Rk−δ) feasible onδ-dependent sources, we need
to show for any terminalt that requires source informationi
that H(Xe

i |X
e
In(t)) = 0. This follows similar to the previous

arguments based on the fact thatX satisfiesH(Xi|XIn(t)) =
0. Specifically,

0 ≤ H(Xe
i |X

e
In(t))

= N(H(XIn(t),i|Xe)−H(XIn(t)|Xe))

= N(H(Xi|XIn(t), Xe))

≤ N(H(Xi|XIn(t))) = 0

VI. PROOF OFLEMMA 2 AND COROLLARY 1

The proof that follows uses two intermediate claims proven
in Section VI-A.

Claim 1: Let I = (G,S, T, C,D) be a network instance.
Let δ > 0. Let R = (R1, . . . , Rk), and letRδ = (R1 −
δ, . . . , Rk − δ). If I is R-feasible onδ-dependent sources
(X1, . . . , Xk) thenI is Rδ-feasible on2δ-dependent sources
(X̄1, . . . , X̄k) such thatX̄i is distributed over an alphabetX i

of size at most2H(X̄i)(1+δ).
Using Claim 1 we may assume throughout this section that

our source random variables are2δ dependent, and that each
Xi has entropyH(Xi) ≥ Rin− δn and supportX i of size at
most2Rin+δn. For ease of presentation, we setH(Xi) = Rin
and considerX = (X1, . . . , Xk) to beδ dependent. Thus the
constantsc for Lemma 2 and Corollary 1 need to be increased
accordingly with respect to the constantsc computed below.

Claim 2: Let δ ≥ 0. Let X = (X1, . . . , Xk) be a set of
random variables over alphabets(X 1, . . . ,X k) such that (a)
∑k

i=1 H(Xi) − H(X) ≤ δn, (b) for eachi the marginal
distribution satisfiesH(Xi) = Rin, and (c) eachXi has
supportX i of size at most2Rin+δn. There exist a constantc,
such that for eachi, there exists a partitionPi = Pi,1, . . . , Pi,ri

of X i in which (a) eachri is at least2Rin−cδn, (b) for each
i, j, and j′, the size ofPi,j equals that ofPi,j′ and (c) for
every (j1, . . . , jk) with ji ∈ [ri] the product space

P (j1, . . . , jk) = P1,j1 × P2,j2 × . . . Pk,jk

satisfies

Pr[(X1, . . . , Xk) ∈ P (j1, . . . , jk)] > 0.

We now prove Lemma 2 using Claim 2 above. We then
prove Corollary 1. Our proof follows the line of proof appear-
ing in [9], [14]. LetI = (G,S, T, C,D) be a network instance
in which all sources are collocated at a single node inG. Let
R = (R1, . . . , Rk). We assume thatI is R feasible onδ
dependent sources. The following argument shows that there
exists a constantc such thatI is Rcδ feasible on independent
sources.

Let n be a block length such that there exists random
source variablesX = (X1, . . . , Xk) with H(Xi) = Rin and
H(X) ≥

∑

i Rin − δn such that the corresponding commu-
nication problem is feasible. The general idea is conceptually



simple. AsX1, . . . , Xk satisfy the condition in Claim 2, we
may define the corresponding partitionsPi,j , product sets
P (j1, . . . , jk), and valuesri appearing in the claim. Consider
the random variables̄X1, . . . , X̄k where eachX̄i is uniformly
distributed over the set[ri]. As ri is at least 2Rin−cδn,
H(X̄) ≥

∑

i Rin− ckδn. As

Pr[(X1, . . . , Xk) ∈ P (j1, . . . , jk)] > 0

for all ji ∈ [ri], we can identify (at least) a singlek-tuple
(x1,j1 , . . . , xk,jk) ∈ P (j1, . . . , jk) for which the communi-
cation of (x1, . . . , xk) over I is successful (yields correct
decoding). This enables the following communication scheme
over I with X̄ as input. For everyk-tuple j1, . . . , jk ∈
[r1] × [r2] × · · · × [rk], the (single) source nodecomputes
the correspondingk-tuple (x1,j1 , . . . , xk,jk) ∈ P (j1, . . . , jk)
and continues the communication as if it were communicating
with the original source informationX. Since communica-
tion is successful, in this case every terminal that decodes
somexi,ji can deduceji simply by finding the element of
Pi = Pi,1, . . . , Pi,ri that containsxi,ji . Lemma 2 follows.

The proof of Corollary 1 is very similar and also follows
ideas of [9], [14]. As ri of Claim 2 is (at least) of size
2Rin−cδn and |X i| ≤ 2Rin+δn, the size ofPi,j is (at most)
2(c+1)δn. We conclude that a super source that has access to
X̄1, . . . , X̄k and has rate(c+1)δ edges to every source nodesi
in G, when given ak-tuplej1, . . . , jk ∈ [r1]× [r2]×· · ·× [rk],
can send thelocation of xi,ji in Pi,ji . This allows source
si, which hasji, to deducexi,ji based on the information it
receives from the super source, sourcesi thus continues the
protocol described in the proof to Lemma 2, sendingxi,ji as
defined above.

A. Proof of Claims 1 and 2

1) Proof of Claim 1: The proof is based on standard
typicality arguments and is omitted due to space limitations.

2) Proof of Claim 2: For simplicity of presentation, we
present our proof for the casek = 2. A similar proof can be
given for generalk. We first note that the size of the support of
X = (X1, X2) is at least2H(X) ≥ 2(R1+R2)n−δn, and that of
Xi is in the range[2Rin, 2Rin+δn]. Here, a pair(x1, x2) is in
the support of(X1, X2) if it has positive probability. Thus for
anaveragex1 there are at least2R2n−2δn valuesx2 for which
p(x1, x2) > 0. Consider the setA1 ⊆ X 1 such that there are
at least2R2n−2δn−1 valuesx2 for which p(x1, x2) > 0. It
holds that the supportΓ of (X1, X2) when X1 is restricted
to A1 is at least of size|A1|2

R2n−2δn−1. In addition, the size
of A1 is at least2R1n−2δn−1. The latter follows from the fact
that

|A1|2
R2n+δn+(2R1n+δn−|A1|)2

R2n−2δn−1 ≥ 2(R1+R2)n−δn.

Let c′ ≥ 1 be a constant to be determined later in the
proof. Now, consider a random partitionP1 of A1 into
r1 = |A1|/2

c′δn setsP1,j each of size2c
′δn. Consider also

a random partitionP2 of X 2 into r2 = |X 2|/2
c′δn setsP2,j

each of size2c
′δn. Here we assume that|A1| and |X 2| are

divisible by2c
′δn, minor modifications in the proof are needed

otherwise. For anyj1, j2 we compute the probability that
P1,j1 × P1,j2 intersectsΓ defined above. Letx1 ∈ P1,j1 . As
x1 is in A1, the probability that there exists anx2 such that
(x1, x2) ∈ Γ is at least (for sufficiently largen)

1−

(2R2n−2R2n−2δn−1

2c′δn

)

(

2R2n

2c′δn

)
≃ 1− e−2(c

′
−2)δn

Using the union bound, this implies that there exist partitions
P1 and P2 for which each and every “cell”P1,j1 × P2,j2

intersectΓ. Dividing the remaining elementsx1 among the
sets P1,j1 evenly, and noticing thatr1 = |A1|/2

c′δn ≥
2R1n−(c′+2)δn−1 suffices to prove our assertion forc′ = 3
while the the constantc in the claim equalsc′ + 2 = 5.
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