
Aspect Instances and their Interactions

Therapon Skotiniotis Karl Lieberherr David H. Lorenz
College of Computer & Information Science

Northeastern University
360 Huntington Avenue 161 CN

Boston, Massachusetts 02115 USA�
skotthe,lieber,lorenz � @ccs.neu.edu

ABSTRACT
Programming languages and paradigms provide mechanisms by
which we can express our own solutions to problems. The way
by which one formulates a solution is affected by the medium with
which the solution is expressed. Currently, the lack of polymor-
phism and the difficulty with which aspect instances can be ac-
cessed and used within AspectJ, force programmers to resolve to
less elegant solutions, introducing code tangling in advice defini-
tions, increasing code complexity and diminishing maintainability
and robustness.

Through examples in AspectJ we discuss issues that relate to as-
pect instances, their interactions, and also the reflective capabilities
of an AOSD language. We argue that any AOSD language should
provide the means by which programmers can refer and manipulate
aspect instances with the same ease and simplicity as with object
instances in OO languages. Reflective capabilities inside AOSD
languages should allow for introspection on their join point and
pointcut mechanisms, allowing for the acquisition and manipula-
tion of runtime information about these entities.

We hope that by exposing these issues for discussion will allow for
a better assessment of these techniques as well as a community-
wide decision as to what should comprise “good” or “bad” tech-
niques based on “proper” or “improper” use of an AOSD technol-
ogy.

1. INTRODUCTION
The open source AspectJ project has evolved into one of the main
stream AOSD technologies. The evolution of the language has,
and will continue, to provide a general purpose effective platform
to accommodate the communities needs in the area of AOSD [9].
In the latest stable release of the language (version 1.0.6), explicit
mechanisms for the creation and manipulation of multiple aspect
instances, has been added. Having these new features allows for the
exploration of bigger, more complex, AOSD systems. This paper
addresses the questions:

� How can one interact with an instance of an aspect, when the
aspect is singleton or when we have multiple instances.

� How does the design of one’s aspects change, if at all, when
you have to deal with multiple instances.

� What is the final impact on the programs complexity, modu-
larity and understanding.

Through the use of the example presented in Section 1.1, we show
that a programs complexity increases in situations where multiple
instances of aspects are present. Furthermore, the current imple-
mentation of AspectJ lacks polymorphic features [4] when it comes
to aspect instances, decreasing the impact of one’s aspect design.
Even though the above deficiencies are present, programmers can
still provide workarounds using AspectJ’s reflective capabilities.
These solutions, however, come at a cost, increasing code com-
plexity, maintainability and modularity. Section 2 presents each
individual case and possible solutions exposing some of AspectJ’s
idiosyncrasies. Section 3 concludes the paper.

1.1 Program Setup
The example used for the rest of the discussion is an extension of
the Tracing example found in the AspectJ Programmers Manual1

[8]. The example consists of two dimensional shapes class hierar-
chy (Figure 1) 2 along with an abstract aspect AbstractTrace
(this abstract aspect with few minor modifications is found in List-
ing 1). In order to address each aspect interaction case in isolation,
a concrete aspect is implemented, defining the appropriate abstract
pointcut methods(), as well as any extra advice and/or methods
that might be needed, in each case.

Listing 1: Altered AbstractTrace aspect definition
public abstract aspect AbstractTrace {
pointcut classes(): within(tracing.*) &&
(!within(tracing.lib.*) ||
!cflow(withincode(* tracing.lib.*(..)))
|| !within(java.lang..*) ||
!cflow(withincode(* java.lang..*(..))));

abstract pointcut methods();
// same as [8] ...
}

1Basic familiarity with AspectJ, and with the examples that are
found in [8], is assumed
2Which is an extension of the example program that is provided
with an installation of AspectJ. The classes that are provided in
the AspectJ distribution (version 1.0.6) are TwoDShape as an ab-
stract class with Circle and Square as two distinct concrete
subclasses

Trapezium

+ area():double
+ perimeter():double

Parallelogram

+ toString():String

+ perimeter():double

+ toString():String

Rhombus

+ perimeter():double + area():double

Circle

+ toString():String

r:double

+ toString():String
+ area():double
+ perimeter():double

Square

+ perimeter():double

s_x2:double
+ toString():String

+ area():double

+ area():double
+ distance(in:TwoDShape):double

TwoDShape

y:double
x:double

+ toString():String

+ getX():double

+ getS_Y():double
+ getS_X():double
+ getH():double

h:double

Quadrilateral

s_y:double
s_x:double

+ getY():double

+ toString():String

Rectangle

+ perimeter():double

r2:double

+ area():double

+ perimeter():double
+ area():double

Ellipse

Figure 1: Class Diagram of the modified AspectJ’s shape’s example

2. EXTENDING THE TRACING EXAMPLE
In this section we first illustrate that the simple task of defining
methods(), is not that simple at all. Subsection 2.1, exposes an
idiosyncrasy found in AspectJ, specifically that of defining a point-
cut to capture calls to a type pattern, and only that pattern. We pro-
vide the “idiom” that solves this problem and its use, along with As-
pectJ’s reflective capabilities that allows one to capture calls on ob-
jects that have different static and dynamic types. Subsection 2.2 il-
lustrates singleton aspect interactions and subsection 2.3 looks
at interactions of multiple aspect instances.

2.1 Dealing with Type Patterns and Reflection
As a simple example, consider tracing all calls that occur within the
tracing package.

Listing 2: The concrete TraceMyClass aspect definition

aspect TraceMyClasses extends AbstractTrace {
pointcut methods(): call(* TwoDShape.*(..));
}

Observe that using the type pattern TwoDShape, the root of the
class diagram, is enough to allow us to capture all calls that are
made by all possible subtypes. There is no need to use TwoD-
Shape+ to denote the type pattern itself and all its subtypes.

In Java every class definition automatically introduces a new type
into the system. In the class diagram found in Figure 1 an instance
of Square introduces a new type �����	��
�� but is also a subtype of
 ��������������� . Subtype polymorphism allows us to use an instance of
Square and refer to it as of type

 ��������������� .

To deal with subtype polymorphism AspectJ provides within the
definition of pointcuts an explicit mechanism to denote subtypes
(+). In our example, consider an aspect that needs to trace all calls
that occur only on the type

 ��������������� but not on any of its sub-
types. At first one would be tempted to use a pointcut like

Listing 3: There is no distinction between Rectangle and Rect-
angle+

pointcut methods(): call(* Rectangle.*(..));

Unfortunately, there is no distinction between Rectangle and
Rectangle+. Listing 3 will undesirably capture calls that are
made to any subclass of Rectangle.

From a section entitled “Idioms” in the AspectJ manual one can
find a pointcut definition for capturing calls to subtypes but not the
root type with the definition, as illustrated in Listing 4.

Listing 4: Idiom definition found in the “Programmer Guide”

call(* (Rectangle+ && !Rectangle))

As a second attempt, one could try to negate the idiom in Listing 4.
However, that results in all types other than

 ��������������� . Another
attempt would be to alter the idiom in order to capture the root type
and none of its subtypes, e.g.,

Listing 5: The && operation yields no join points

call(* (Rectangle && !Rectangle+).*(..))

but the above pointcut definition results in no advice ever getting
executed. It appears that since Rectangle and Rectangle+
denote the same set of types in your program, the pointcut in List-
ing 5 is actually an empty set. The pointcut in Listing 4 seems the
same as that in Listing 5, but bound differently on the same opera-
tors, denoting different sets of types.

Listing 6: Capturing calls Rectangle, but none of its subclasses

pointcut methods(): call(* Rectangle.*(..))
&& !call(* (Rectangle+ && !Rectangle).*(..));

Surprisingly enough the solution is the pointcut in Listing 6, in
plain English, picks all calls to the type

 ��������������� and, no calls
to any subtypes of

 ��������������� . There seems to be a duality in the
type pattern definitions inside a pointcut definition. It is “nice” at
times that we could capture all subtypes by simply providing the
root type of our class diagram. However, it comes with a price.
The explicit use of the subtype pattern mechanism, denoted by +,
when used inside a conjunction with the type pattern itself forces
the type pattern to behave in the correct manner. That is, pick the
type

 ��������������� and only

 ��������������� . The same behavior can also

be observed with the use of the execution pointcut primitive.

Another interesting case that has to do with types and the reflection
mechanisms of AspectJ, arises when you would like to catch calls
to instances that are used inside the source code under a different
type than the type of the runtime instance. This is typically the case
when an instance of an object o is instantiated with type � and is
then casted to a different type (supertype in the case of Java) � � . In
the following code fragment:

Listing 7: An example where dynamic and static types are not the
same

Rectangle r = new Square();
r.area();

The dynamic type of r is �����	��
�� while its static type is

 ��������������� .

If one would like to trace this types of calls in the code one solution
could be:

Listing 8: Getting the types of source and target via AspectJ’s re-
flective capabilities

public abstract aspect AbstractTrace {
...
before(): classes() && methods() &&
if(thisJoinPoint.getSignature().getDeclaringType()

.getName().compareTo(thisJoinPoint.getTarget()
.getClass().getName()) != 0) {

doTraceEntry(thisJoinPoint, false);
System.out.println(thisJoinPoint.
getSignature().getDeclaringType().getName());
System.out.println(thisJoinPoint.
getTarget().getClass().getName());
}

}

The code fragment above explores some of the reflective capabil-
ities that AspectJ provides. More information could be obtained,
like source location as well as the arguments of the call. One can
use these pieces of information in order to provide finer execution

control inside an application. Furthermore, we have found that ac-
cess to the program’s information through AspectJ’s reflective API
to be extremely helpful in debugging but also understanding a pro-
gram’s behavior. We believe that such information are vital for any
AOSD language.

Reflective information along with the non-invasive addition of pro-
gram behavior through advice make AOSD technologies good can-
didates for the enforcement/checking of design rules in Java pro-
grams, or even the generation of code that could, at runtime, per-
form checks for OCL [1] or even pre and post conditions (Design
by Contract) [5, 7, 3]. Allowing for clear separation between the
actual program and its constraints (e.g. contracts) in a modular
and more reusable manner than from what is currently available by
other technologies.

2.2 Aspect Interactions
Another interesting scenario is the one where you would like to
have interactions between instances of aspects. These interactions
encode operations as methods inside aspects and then reuse these
methods. The alternative could be to create extra Java classes that
will contain these methods instead of placing them inside aspect
definitions. This alternative, however, introduces new classes and
in some cases this approach might not be desirable3. By placing all
of the code inside aspects allows for a more modular, and reusable
design, limiting any further coupling inside aspects [2].

Listing 9: The AbstractCollector aspect, obtaining the in-
formation from TraceCircle and TraceRectangle aspects

aspect AspectCollector{
AbstractCollection temp;
pointcut main(): call(* main(..));
after():
main(){
temp=TraceRectangle.aspectOf().getTargets();
prettyPrint(temp, new String("Rectangle"));
temp=TraceCircle.aspectOf().getTargets();
prettyPrint(temp, new String("Circle"));
}

private void prettyPrint(
AbstractCollection ele, String source){

Iterator it = ele.iterator();
while (it.hasNext()){
String name = (String)it.next();
System.out.println("Source:" +
source + "Targets:" + name);
}

}
}

For example, consider the case where we would like at the end of a
programs execution to obtain the classes of all the calls whose dy-
namic type and static type are different. An aspect (singleton)
is created for each non-abstract class that is also a superclass for
some other class(es) in the program. For each of these classes we
have, an aspect (TraceRectangle and TraceCircle) that
captures calls and inspects the types for source and target.
If the two types differ, then they are stored in an Abstract-
Collection that is a member of the instance of each concrete
3Consider the case where you would like to read in any Java pro-
gram and create aspects and new classes to accommodate runtime
checks of OCL or even Contract definitions. By creating new
classes the programmer has to worry about class name clashes and
ambiguity of class name resolutions between packages.

trace aspect. A third aspect (AspectCollector) after main()
completes execution, obtains from the two aspects, the two Ab-
stractCollections and displays the information that were
collected during execution. The AbstractTrace definition will
have to be appended with an extra abstract (Listing 10).

Listing 10: Appending AbstractTrace with the new method
definition
...

abstract AbstractCollection getTargets()
...

TraceRectangle, and similarly TraceCircle, will have to
be altered as follows:

Listing 11: Using arguments in point cuts and getting the correct
references to aspect instances
aspect TraceCircle extends AbstractTrace {
AbstractCollection targets = new Vector();
pointcut methods():
!call(* (Circle+ && !Circle).*(..))
&& call(* Circle.*(..));

before(): methods(){
doTraceEntry(thisJoinPoint, false);
}

private void doTraceEntry(JoinPoint jp,
boolean isConstructor) {

Class source, target;
source=jp.getSignature().getDeclaringType();
target=jp.getTarget().getClass();
if (source.getName().

compareTo(target.getName()) != 0){
if(!targets.contains(target.getName())){
boolean temp=targets.add(target.getName());
}
}
}
public AbstractCollection getTargets(){
return targets;

}
}

In this manner all operations, and code that address the issue of
tracing and collecting type information, reside inside aspect defini-
tions leaving the original classes untouched.

The mechanisms by which one can define instance methods (as
well as class methods) for aspects is essentially identical to the way
that OO languages provide these mechanisms for typical objects.
The difference lies in the case of instance methods. There is no
way by which one can “instantiate” an aspect in AspectJ. Thus one
cannot create a binding to an instance within the source code and
then, through that binding, call methods of the aspects instance. To
bind an aspect instance, one must use aspectOf().

An alternative approach is to allow the programmer to instantiate
an aspect, and by doing so, the aspect starts participating in the pro-
gram’s execution. This is a technique that has been implemented in
AspectS [6]. Binding an aspect is therefore an instantiation within
your code. Although the difference of these two approaches seems
minute, the outcomes are not. The second approach, gives the pro-
grammer full control over the lifetime of an aspect, with the ability

to enable or disable the aspect at specific points within the pro-
gram’s execution. AspectJ does not provide any control when it
comes to enabling an aspect at specific points. Instead, one has to
encode this using a flag and an if statement to wrap the advice
code, or changing a pointcut definition with an if pointcut des-
ignator, tangling the concern throughout, possibly, many aspects
that might require this feature. Also aspect-aspect interactions be-
come, in essence, identical to object-object interactions without in-
troducing code in your aspects to acquire references to other as-
pects. In this manner advice code is not “polluted” with calls to
aspectOf().

2.3 Aspect Instances
A more interesting case arises when your aspects are not sin-
gleton as in Section 2.2 but are rather pertarget, per-
cflow, perthis or percflowbelow. AspectJ provides a
mechanism with which you could access these instances, provided
that the access method is given a parameter of type Object(e.g.
aspectOf(Object obj)). We can think of two cases

1. There is at most one aspect instance attached to some object
instances.

2. There are more than one aspect instance, each instance being
of a different aspect definition, and they are all attached on
the same object instance(s).

For case 1 above consider the examples of TraceCircle and
TraceRectangle but this time defined as below

Listing 12: Altered TraceCircle aspect definition to associate
an instance of the aspect to each instance of a target object
aspect TraceCircle extends AbstractTrace
pertarget(call(* Circle.*(..))){
AbstractCollection targets = new Vector();
pointcut methods():!call
(* (Circle+ && !Circle).*(..))
&& call(* Circle.*(..));

...

This will attach an instance of the aspect to each instance of Cir-
cle but not to any of its subclasses. The corresponding code
changes, and effect, will also occur for TraceRectangle and
Rectangle. AspectCollector though will have to change
since the AspectJ compiler now complains since the method as-
pectOf() is no longer available in TraceRectangle and Trace-
Circle. Instead, you have to pass the right object as an argument
to the call aspectOf(). The right object can be obtained from
the pointcut itself, by binding the target object of a call within the
pointcut and passing it to the advice code.

Following the ideas from OO Programming you would expect that
since both of the concrete aspects extend the abstract aspect Ab-
stractTrace that an addition to AspectCollector like

Listing 13: Getting a reference to an instance of an aspect
temp=AbstractTrace.asepectOf(obj).getTargets();

would deal with each case in the right way. That is since there is
only one aspect instance and of different “type” the AspectJ com-
piler would call the correct method on the correct instance. How-
ever this is not really the case. The compiler complains for the

above line of code, with the error that there is no such method de-
fined for AbstractTrace 4. A workaround can be achieved by
wrapping your code with tests to check for the existence of a con-
crete aspect through the usage of hasAspect(). This approach
might not work however if you do not have all possible aspect def-
initions that could, potential, be attached at a specific pointcut. It
is even more cumbersome, if you would like to find out all aspects
that are attached to a pointcut since you have to manually check and
collect all such instances. The language itself provides no mecha-
nism through which one could collect this information in a more
modular manner.

Listing 14: AbstractCollector aspect definition dealing with
multiple instances of aspects

aspect AspectCollector{
AbstractCollection temp;
pointcut circles(Circle cc):
call(* Circle.*(..)) &&
!call(* (Circle+ && !Circle).*(..))
&& target(cc);

pointcut rectangles(Rectangle rr):
call(* Rectangle.*(..)) &&
!call(* (Rectangle+ && !Rectangle).*(..))
&& target(rr);

after(Circle cc):
circles(cc){
temp = TraceCircle.
aspectOf(cc).getTargets();

prettyPrint(temp,
new String("Circle"), cc);

}
after(Rectangle rr):
rectangles(rr){
temp = TraceRectangle.
aspectOf(rr).getTargets();

prettyPrint(temp,
new String("Rectangle"), rr);

}
private void
prettyPrint(AbstractCollection ele,
String source, Object obj){

Iterator it = ele.iterator();
while (it.hasNext()){
String name = (String)it.next();
System.out.println("

Source:" + source +
"hashNumber:" + obj.hashCode()+
"Targets:" + name);

}}}

Looking at case 2, we might have more than one “type” of as-
pect instance attached to an object. In this case you either have
to explicitly check for all the possible aspects that are attached to
the instance and pick the one you are interested in. It becomes
even harder, since the burden of how to decide which aspect is
more appropriate for your needs essentially requires to evaluate
hasAspect() for all aspects in the system, or possible aspects
that might be found on a specific object instance, by guessing point-
cut results. However, even this tedious solution to the problem is
not always possible. Consider an application that reads in a Java
program and generates aspect code (on the fly) to check for design
constraints. The programmer does not have all possible aspect def-
initions before hand, nor can he evaluate possible aspect definitions
4A more detailed discussion on this issue, along with possible so-
lutions to it can be found at[4]

that might appear at different pointcuts.

There should be better mechanisms to both refer but also use aspect
instances and their methods. The lack of polymorphism when it
comes to aspects in AspectJ makes the use of the language cumber-
some when it comes to large and complex aspect oriented solutions.
The work-arounds to these issues introduce nested if statements
inside you advice, bringing back tangled code, this time inside ad-
vice definitions, along with all its disadvantages that AOSD was
designed to solve.

3. CONCLUSION
We have shown, through AspectJ examples, the shortcomings of an
AOSD language which does not provide polymorphism for aspects
or explicit aspect instantiation as part of the language. We further
argue that, lack of these features causes programmers to come up
with solutions that introduce tangled code inside advice definitions.
As a result, increasing code complexity, decrease code maintain-
ability and modularity, and making program extension/evolution
tedious and error prone.

In trying to find possible solutions, we believe that the approach of
aspect instantiation taken by AspectS [6] is more appropriate. As-
pectS allows the instantiation of an aspect (via new), the activation
of an aspect (via install5). Obtaining a reference to an aspect
instance in AspectS is a matter of a simple assignment at instanti-
ation time, and deployment of the aspect becomes a simple call to
its install method. Being able to refer and manipulate aspects
as first class artifacts during the execution of a program, could be
explored further to provide better mechanisms for a large portion
of applications [3]. A recent paper[4] addresses the issue of aspect
polymorphism in more detail, and discusss possible solutions.

We therefore conclude that features like, aspect instantiation, ac-
tivation as well as aspect polymorphism, are essential features for
any AOSD technology. Further analysis and research for finding
appropriate solutions to these issues remains an open question for
discussion.

4. ACKNOWLEDGMENTS
We would like to thank all of the students in COM3360 and COM3362
for bringing up questions and valuable example programs. We
thank Paul Freeman for his input and ideas, and the members of
the AspectJ’s users mailing list.

5. REFERENCES
[1] The Object Constraint Language.

http://www-3.ibm.com/software/ad/library/standards/ocl.html.

[2] Constantinos Constantinides and Youssef Hassoun. Visibility
considerations and code reusability in aspectj. In
Aspect-Oriented Software Development of the SIG
Object-Oriented Software Development, German Informatics
Society, Essen, March 4-5 2003 (To Appear).

[3] Constantinos A. Constantinides and Therapon Skotiniotis.
Reasoning about a classification of crosscutting concerns in
object-oriented systems. In Second International Workshop on
Aspect-Oriented Software Development of the SIG
Object-Oriented Software Development, Bonn, February
21-22 2002. German Informatics Society.

5Deactivation in AspectS is provided through uninstall

[4] Erik Ernst and David H. Lorenz. Aspects and polymorpshism
in aspectj. In International Conference on Aspect Oriented
Software Development, Boston, March 2003 (To Appear).

[5] Robert Bruce Findler and Matthias Felleisen. Contract
soundness for object-oriented languages. In Conferece on
Object Oriented Programming, Systems, Languages and
Applications, number 11 in ACM SIGPLAN Notices, pages
1–15, Tampa Bay, Florida, October 2002.

[6] Robert Hirschfeld. Aspect-oriented programming with
aspects. http://www-ia.tu-
ilmenau.de/ hirsch/Projects/Squeak/AspectS/AspectS.html.

[7] Cristina Lopes and Martin Lippert. Design by contract with
aspect-oriented programming, 1999. U.S. Patent No.
09/426,142. (Pending).

[8] The AspectJ Team. The AspectJ Programmers Guide.
http://www.eclipse.org/aspectj/.

[9] The AspectJ Team. The AspectJ Web Site.
http://www.eclipse.org/aspectj/.

