Chais2025_Heb_and_Eng-web

64 ע פיתוח ואימון יכולות מרחביות ב סטודנטים להנדסה ואדריכלות באמצעות שילוב אסטרטגיות הוראה McGrew, K.S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1–10. https://doi.org/10.1016/j.intell.2008.08.004. Mix, K.S., Levine, S.C., Cheng, Y.-L., Young, C., Hambrick, D.Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. J. Exp. Psychol. Gen., 145, 1206–1227. https://doi.org/10.1037/xge0000182. Pinandita, T., Mohamad, S. N. M., Azman, F. N., & Himawan, H. (2023). An Analysis of Technology Issues in Mobile Augmented Reality. Informatica, 47(7). https://doi.org/10.31449/inf.v47i7.4615 Porat, R., & Ceobanu, C. (2023). Spatial Ability: Understanding the Past, Looking into the Future. Eur. Proc. Educ. Sci., 6, 99–108 . https://doi.org/10.15405/epes.23056.9. Porat, R.; Ceobanu, C. Enhancing Spatial Ability among Undergraduate First-Year Engineering and Architecture Students. Educ. Sci. 2024, 14, 400. https://doi.org/10.3390/educsci14040400. Porat, R., & Ceobanu, C. (2024). The Role of Spatial Ability in Academic Success: The Impact of the Integrated Hybrid Training Program in Architecture and Engineering Higher Education. Education Sciences, 14(11), 1237. https://doi.org/10.3390/educsci14111237 Porat, R., & Ciprian Ceobanu. (2024). Enhancing Spatial Ability: A New Integrated Hybrid Training Approach for Engineering and Architecture Students. Education Sciences, 14(6), 563–563. https://doi.org/10.3390/educsci14060563 Reilly, D., Neumann, D.L., & Andrews, G. (2017). Gender Differences in Spatial Ability: Implications for STEM Education and Approaches to Reducing the Gender Gap for Parents and Educators. In Visual- Spatial Ability in STEM Education: Transforming Research into Practice (pp. 195–224). Springer International Publishing. https://doi.org/10.1007/978-3-319-44385-0_10. Rittle-Johnson, B., Zippert, E.L., & Boice, K.L. (2019). The roles of patterning and spatial skills in early mathematics development. Early Child. Res. Q., 46, 166–178. https://doi.org/10.1016/j.ecresq.2018.03.006. Schneider, W., & McGrew, K. (2012). The CattellHornCarroll model of intelligence. In Contemporary Intellectual Assessment: Theories, Tests, and Issues (pp. 99–144). Guilford Press. Sergeeva, E.V., Moskvina, E.A., & Torshina, O.A. (2019). The interaction between mathematics and architecture. IOP Conf. Ser. Mater. Sci. Eng., 675, 012018. https://doi.org/10.1088/1757- 899X/675/1/012018. Sorby, S.A. (1999). Developing 3D spatial visualization skills. Engineering Design Graphics Journal, 63(2), 21-32. Sorby, S.A., & Baartmans, B.J. (2000). The development and assessment of a course for enhancing the 3-D spatial visualization skills of first-year engineering students. J. Eng. Educ., 89, 301–307. Sorby, S.A. (2007). Developing 3D spatial skills for engineering students. Australas. J. Eng. Educ., 13, 1–11. Voyer, D., Voyer, S., & Philip, B.M. (1995). Magnitude of sex differences in spatial abilities: A meta- analysis and consideration of critical variables. Psychol. Bull., 117, 250. Wai, J., Lubinski, D., & Benbow, C.P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. J. Educ. Psychol., 101, 817–835. https://doi.org/10.1037/a0016127.

RkJQdWJsaXNoZXIy ODc3OTcw